Skip to content

Add Project Euler problem 800 solution 1 #8567

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
3 changes: 3 additions & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -317,6 +317,7 @@
* [Longest Sub Array](dynamic_programming/longest_sub_array.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Sub Array](dynamic_programming/max_sub_array.py)
* [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
Expand Down Expand Up @@ -1016,6 +1017,8 @@
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
* Problem 800
* [Sol1](project_euler/problem_800/sol1.py)

## Quantum
* [Bb84](quantum/bb84.py)
Expand Down
Empty file.
65 changes: 65 additions & 0 deletions project_euler/problem_800/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
"""
Project Euler Problem 800: https://projecteuler.net/problem=800
An integer of the form p^q q^p with prime numbers p != q is called a hybrid-integer.
For example, 800 = 2^5 5^2 is a hybrid-integer.
We define C(n) to be the number of hybrid-integers less than or equal to n.
You are given C(800) = 2 and C(800^800) = 10790
Find C(800800^800800)
"""

from math import isqrt, log2


def calculate_prime_numbers(max_number: int) -> list[int]:
"""
Returns prime numbers below max_number
>>> calculate_prime_numbers(10)
[2, 3, 5, 7]
"""

is_prime = [True] * max_number
for i in range(2, isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2, max_number, i):
is_prime[j] = False

return [i for i in range(2, max_number) if is_prime[i]]


def solution(base: int = 800800, degree: int = 800800) -> int:
"""
Returns the number of hybrid-integers less than or equal to base^degree
>>> solution(800, 1)
2
>>> solution(800, 800)
10790
"""

upper_bound = degree * log2(base)
max_prime = int(upper_bound)
prime_numbers = calculate_prime_numbers(max_prime)

hybrid_integers_count = 0
left = 0
right = len(prime_numbers) - 1
while left < right:
while (
prime_numbers[right] * log2(prime_numbers[left])
+ prime_numbers[left] * log2(prime_numbers[right])
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1

return hybrid_integers_count


if __name__ == "__main__":
print(f"{solution() = }")