Skip to content

Random graph generator hacktoberfest #5240

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
67 changes: 67 additions & 0 deletions graphs/random_graph_generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
"""
* Author: Manuel Di Lullo (https://github.com/manueldilullo)
* Description: Random graphs generator.
Uses graphs represented with an adjacency list.

URL: https://en.wikipedia.org/wiki/Random_graph
"""

import random


def random_graph(
vertices_number: int, probability: float, directed: bool = False
) -> dict:
"""
Generate a random graph
@input: vertices_number (number of vertices),
probability (probability that a generic edge (u,v) exists),
directed (if True: graph will be a directed graph,
otherwise it will be an undirected graph)
@examples:
>>> random.seed(1)
>>> random_graph(4, 0.5)
{0: [1], 1: [0, 2, 3], 2: [1, 3], 3: [1, 2]}
>>> random.seed(1)
>>> random_graph(4, 0.5, True)
{0: [1], 1: [2, 3], 2: [3], 3: []}
"""
graph = {i: [] for i in range(vertices_number)}

# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(vertices_number)
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph

# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(vertices_number):
for j in range(i + 1, vertices_number):
if random.random() < probability:
graph[i].append(j)
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(i)
return graph


def complete_graph(vertices_number: int) -> dict:
"""
Generate a complete graph with vertices_number vertices.
@input: vertices_number (number of vertices),
directed (False if the graph is undirected, True otherwise)
@example:
>>> print(complete_graph(3))
{0: [1, 2], 1: [0, 2], 2: [0, 1]}
"""
return {
i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number)
}


if __name__ == "__main__":
import doctest

doctest.testmod()