Skip to content

Added morphological operations, fixes: #5197 #5199

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Oct 16, 2021
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import numpy as np
from PIL import Image


def rgb2gray(rgb: np.array) -> np.array:
"""
Return gray image from rgb image
>>> rgb2gray(np.array([[[127, 255, 0]]]))
array([[187.6453]])
>>> rgb2gray(np.array([[[0, 0, 0]]]))
array([[0.]])
>>> rgb2gray(np.array([[[2, 4, 1]]]))
array([[3.0598]])
>>> rgb2gray(np.array([[[26, 255, 14], [ 5, 147, 20], [ 1, 200, 0]]]))
array([[159.0524, 90.0635, 117.6989]])
"""
r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray


def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))
array([[False]])
>>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]]))
array([[False, False, False]])
>>> gray2binary(np.array([[26, 255, 14], [ 5, 147, 20], [ 1, 200, 0]]))
array([[False, True, False],
[False, True, False],
[False, True, False]])
"""
return (127 < gray) & (gray <= 255)


def dilation(image: np.array, kernel: np.array) -> np.array:
"""
Return dilated image
>>> dilation(np.array([[True, False, True]]), np.array([[0, 1, 0]]))
array([[False, False, False]])
>>> dilation(np.array([[False, False, True]]), np.array([[1, 0, 1]]))
array([[False, False, False]])
"""
output = np.zeros_like(image)
image_padded = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)
)

# Copy image to padded image
image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image

# Iterate over image & apply kernel
for x in range(image.shape[1]):
for y in range(image.shape[0]):
summation = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
if summation > 0:
output[y, x] = 1
else:
output[y, x] = 0
return output


# kernel to be applied
structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])


if __name__ == "__main__":
# read original image
image = np.array(Image.open(r"..\image_data\lena.jpg"))
# convert it into binary image
binary = gray2binary(rgb2gray(image))
# Apply dilation operation
output = dilation(binary, structuring_element)
# Save the output image
pil_img = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png")
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
from PIL import Image


def rgb2gray(rgb: np.array) -> np.array:
"""
Return gray image from rgb image
>>> rgb2gray(np.array([[[127, 255, 0]]]))
array([[187.6453]])
>>> rgb2gray(np.array([[[0, 0, 0]]]))
array([[0.]])
>>> rgb2gray(np.array([[[2, 4, 1]]]))
array([[3.0598]])
>>> rgb2gray(np.array([[[26, 255, 14], [ 5, 147, 20], [ 1, 200, 0]]]))
array([[159.0524, 90.0635, 117.6989]])
"""
r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray


def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))
array([[False]])
>>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]]))
array([[False, False, False]])
>>> gray2binary(np.array([[26, 255, 14], [ 5, 147, 20], [ 1, 200, 0]]))
array([[False, True, False],
[False, True, False],
[False, True, False]])
"""
return (127 < gray) & (gray <= 255)


def erosion(image: np.array, kernel: np.array) -> np.array:
"""
Return eroded image
>>> erosion(np.array([[True, True, False]]), np.array([[0, 1, 0]]))
array([[False, False, False]])
>>> erosion(np.array([[True, False, False]]), np.array([[1, 1, 0]]))
array([[False, False, False]])
"""
output = np.zeros_like(image)
image_padded = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)
)

# Copy image to padded image
image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image

# Iterate over image & apply kernel
for x in range(image.shape[1]):
for y in range(image.shape[0]):
summation = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
if summation == 5:
output[y, x] = 1
else:
output[y, x] = 0
return output


# kernel to be applied
structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])

if __name__ == "__main__":
# read original image
image = np.array(Image.open(r"..\image_data\lena.jpg"))
# convert it into binary image
binary = gray2binary(rgb2gray(image))
# Apply erosion operation
output = erosion(binary, structuring_element)
# Save the output image
pil_img = Image.fromarray(output).convert("RGB")
pil_img.save("result_erosion.png")