Skip to content

Add mandelbrot algorithm #4232

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions graphics/mandelbrot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
"""
The Mandelbrot set is the set of complex numbers "c" for which the series
"z_(n+1) = z_n * z_n + c" does not diverge, i.e. remains bounded. Thus, a
complex number "c" is a member of the Mandelbrot set if, when starting with
"z_0 = 0" and applying the iteration repeatedly, the absolute value of
"z_n" remains bounded for all "n > 0". Complex numbers can be written as
"a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i"
is the imaginary component, usually drawn on the y-axis. Most visualizations
of the Mandelbrot set use a color-coding to indicate after how many steps in
the series the numbers outside the set diverge. Images of the Mandelbrot set
exhibit an elaborate and infinitely complicated boundary that reveals
progressively ever-finer recursive detail at increasing magnifications, making
the boundary of the Mandelbrot set a fractal curve.
(description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set )
(see also https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
"""


import colorsys

from PIL import Image # type: ignore


def getDistance(x: float, y: float, max_step: int) -> float:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Variable and function names should follow the snake_case naming convention. Please update the following name accordingly: getDistance

Please provide descriptive name for the parameter: x

Please provide descriptive name for the parameter: y

"""
Return the relative distance (= step/max_step) after which the complex number
constituted by this x-y-pair diverges. Members of the Mandelbrot set do not
diverge so their distance is 1.

>>> getDistance(0, 0, 50)
1.0
>>> getDistance(0.5, 0.5, 50)
0.061224489795918366
>>> getDistance(2, 0, 50)
0.0
"""
a = x
b = y
for step in range(max_step):
a_new = a * a - b * b + x
b = 2 * a * b + y
a = a_new

# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)


def get_black_and_white_rgb(distance: float) -> tuple:
"""
Black&white color-coding that ignores the relative distance. The Mandelbrot
set is black, everything else is white.

>>> get_black_and_white_rgb(0)
(255, 255, 255)
>>> get_black_and_white_rgb(0.5)
(255, 255, 255)
>>> get_black_and_white_rgb(1)
(0, 0, 0)
"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)


def get_color_coded_rgb(distance: float) -> tuple:
"""
Color-coding taking the relative distance into account. The Mandelbrot set
is black.

>>> get_color_coded_rgb(0)
(255, 0, 0)
>>> get_color_coded_rgb(0.5)
(0, 255, 255)
>>> get_color_coded_rgb(1)
(0, 0, 0)
"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(distance, 1, 1))


def get_image(
image_width: int = 800,
image_height: int = 600,
figure_center_x: float = -0.6,
figure_center_y: float = 0,
figure_width: float = 3.2,
max_step: int = 50,
use_distance_color_coding: bool = True,
) -> Image.Image:
"""
Function to generate the image of the Mandelbrot set. Two types of coordinates
are used: image-coordinates that refer to the pixels and figure-coordinates
that refer to the complex numbers inside and outside the Mandelbrot set. The
figure-coordinates in the arguments of this function determine which section
of the Mandelbrot set is viewed. The main area of the Mandelbrot set is
roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.

>>> get_image().load()[0,0]
(255, 0, 0)
>>> get_image(use_distance_color_coding = False).load()[0,0]
(255, 255, 255)
"""
img = Image.new("RGB", (image_width, image_height))
pixels = img.load()

# loop through the image-coordinates
for image_x in range(image_width):
for image_y in range(image_height):

# determine the figure-coordinates based on the image-coordinates
figure_height = figure_width / image_width * image_height
figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width
figure_y = figure_center_y + (image_y / image_height - 0.5) * figure_height

distance = getDistance(figure_x, figure_y, max_step)

# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
pixels[image_x, image_y] = get_color_coded_rgb(distance)
else:
pixels[image_x, image_y] = get_black_and_white_rgb(distance)

return img


if __name__ == "__main__":
import doctest

doctest.testmod()

# colored version, full figure
img = get_image()

# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)

# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)

# uncomment to save the image
# img.save("mandelbrot.png")

img.show()