Skip to content

HACKTOBERFEST - Added solution to Euler 64. #3706

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Nov 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
77 changes: 77 additions & 0 deletions project_euler/problem_064/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
"""
Project Euler Problem 64: https://projecteuler.net/problem=64

All square roots are periodic when written as continued fractions.
For example, let us consider sqrt(23).
It can be seen that the sequence is repeating.
For conciseness, we use the notation sqrt(23)=[4;(1,3,1,8)],
to indicate that the block (1,3,1,8) repeats indefinitely.
Exactly four continued fractions, for N<=13, have an odd period.
How many continued fractions for N<=10000 have an odd period?

References:
- https://en.wikipedia.org/wiki/Continued_fraction
"""

from math import floor, sqrt


def continuous_fraction_period(n: int) -> int:
"""
Returns the continued fraction period of a number n.

>>> continuous_fraction_period(2)
1
>>> continuous_fraction_period(5)
1
>>> continuous_fraction_period(7)
4
>>> continuous_fraction_period(11)
2
>>> continuous_fraction_period(13)
5
"""
numerator = 0.0
denominator = 1.0
ROOT = int(sqrt(n))
integer_part = ROOT
period = 0
while integer_part != 2 * ROOT:
numerator = denominator * integer_part - numerator
denominator = (n - numerator ** 2) / denominator
integer_part = int((ROOT + numerator) / denominator)
period += 1
return period


def solution(n: int = 10000) -> int:
"""
Returns the count of numbers <= 10000 with odd periods.
This function calls continuous_fraction_period for numbers which are
not perfect squares.
This is checked in if sr - floor(sr) != 0 statement.
If an odd period is returned by continuous_fraction_period,
count_odd_periods is increased by 1.

>>> solution(2)
1
>>> solution(5)
2
>>> solution(7)
2
>>> solution(11)
3
>>> solution(13)
4
"""
count_odd_periods = 0
for i in range(2, n + 1):
sr = sqrt(i)
if sr - floor(sr) != 0:
if continuous_fraction_period(i) % 2 == 1:
count_odd_periods += 1
return count_odd_periods


if __name__ == "__main__":
print(f"{solution(int(input().strip()))}")