Skip to content

Added a solution for Project Euler Problem 203 "Squarefree Binomial Coefficients" #3513

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 3, 2020
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
181 changes: 181 additions & 0 deletions project_euler/problem_203/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
"""
Project Euler Problem 203: https://projecteuler.net/problem=203

The binomial coefficients (n k) can be arranged in triangular form, Pascal's
triangle, like this:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
.........

It can be seen that the first eight rows of Pascal's triangle contain twelve
distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35.

A positive integer n is called squarefree if no square of a prime divides n.
Of the twelve distinct numbers in the first eight rows of Pascal's triangle,
all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers
in the first eight rows is 105.

Find the sum of the distinct squarefree numbers in the first 51 rows of
Pascal's triangle.

References:
- https://en.wikipedia.org/wiki/Pascal%27s_triangle
"""

import math
from typing import List, Set


def get_pascal_triangle_unique_coefficients(depth: int) -> Set[int]:
"""
Returns the unique coefficients of a Pascal's triangle of depth "depth".

The coefficients of this triangle are symmetric. A further improvement to this
method could be to calculate the coefficients once per level. Nonetheless,
the current implementation is fast enough for the original problem.

>>> get_pascal_triangle_unique_coefficients(1)
{1}
>>> get_pascal_triangle_unique_coefficients(2)
{1}
>>> get_pascal_triangle_unique_coefficients(3)
{1, 2}
>>> get_pascal_triangle_unique_coefficients(8)
{1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}
"""
coefficients = {1}
previous_coefficients = [1]
for step in range(2, depth + 1):
coefficients_begins_one = previous_coefficients + [0]
coefficients_ends_one = [0] + previous_coefficients
previous_coefficients = []
for x, y in zip(coefficients_begins_one, coefficients_ends_one):
coefficients.add(x + y)
previous_coefficients.append(x + y)
return coefficients


def get_primes_squared(max_number: int) -> List[int]:
"""
Calculates all primes between 2 and round(sqrt(max_number)) and returns
them squared up.

>>> get_primes_squared(2)
[]
>>> get_primes_squared(4)
[4]
>>> get_primes_squared(10)
[4, 9]
>>> get_primes_squared(100)
[4, 9, 25, 49]
"""
max_prime = round(math.sqrt(max_number))
non_primes = set()
primes = []
for num in range(2, max_prime + 1):
if num in non_primes:
continue

counter = 2
while num * counter <= max_prime:
non_primes.add(num * counter)
counter += 1

primes.append(num ** 2)
return primes


def get_squarefree(
unique_coefficients: Set[int], squared_primes: List[int]
) -> Set[int]:
"""
Calculates the squarefree numbers inside unique_coefficients given a
list of square of primes.

Based on the definition of a non-squarefree number, then any non-squarefree
n can be decomposed as n = p*p*r, where p is positive prime number and r
is a positive integer.

Under the previous formula, any coefficient that is lower than p*p is
squarefree as r cannot be negative. On the contrary, if any r exists such
that n = p*p*r, then the number is non-squarefree.

>>> get_squarefree({1}, [])
set()
>>> get_squarefree({1, 2}, [])
set()
>>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25])
{1, 2, 3, 5, 6, 7, 35, 10, 15, 21}
"""

def get_squared_primes_to_use(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A function within a function is mostly used as a wrapper. This doesn't seem like that so please separate them out.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, thanks for the advice!

Taking out the function also revealed that one doctest of get_squared_primes_to_use was failing. I fixed it and revisited the function to gracefully handle that failing case.

num_to_look: int, squared_primes: List[int], previous_index: int
) -> int:
"""
Returns an int indicating the last index on which squares of primes
in primes are lower than num_to_look.

This method supposes that squared_primes is sorted in ascending order and that
each num_to_look is provided in ascending order as well. Under these
assumptions, it needs a previous_index parameter that tells what was
the index returned by the method for the previous num_to_look.

If all the elements in squared_primes are greater than num_to_look, then the
method returns -1.

>>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0)
-1
>>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0)
1
>>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1)
3
"""
idx = previous_index
while idx < len(squared_primes) and squared_primes[idx] <= num_to_look:
idx += 1
if idx == len(squared_primes) and squared_primes[-1] > num_to_look:
return -1
return idx

if len(squared_primes) == 0:
return set()

non_squarefrees = set()
prime_squared_idx = 0
for num in sorted(unique_coefficients):
prime_squared_idx = get_squared_primes_to_use(
num, squared_primes, prime_squared_idx
)
if prime_squared_idx == -1:
continue
if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]):
non_squarefrees.add(num)

return unique_coefficients.difference(non_squarefrees)


def solution(n: int = 51) -> int:
"""
Returns the sum of squarefrees for a given Pascal's Triangle of depth n.

>>> solution(1)
0
>>> solution(8)
105
>>> solution(9)
175
"""
unique_coefficients = get_pascal_triangle_unique_coefficients(n)
primes = get_primes_squared(max(unique_coefficients))
squarefrees = get_squarefree(unique_coefficients, primes)
return sum(squarefrees)


if __name__ == "__main__":
print(f"{solution() = }")