Skip to content

Project Euler Problem 10: style improvements #2924

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 24 additions & 16 deletions project_euler/problem_10/sol1.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
"""
https://projecteuler.net/problem=10

Problem Statement:
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Expand All @@ -7,28 +9,25 @@
from math import sqrt


def is_prime(n):
def is_prime(n: int) -> bool:
"""Returns boolean representing primality of given number num.
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
"""
for i in range(2, int(sqrt(n)) + 1):
if n % i == 0:
return False

return True


def sum_of_primes(n):
if n > 2:
sumOfPrimes = 2
else:
return 0

for i in range(3, n, 2):
if is_prime(i):
sumOfPrimes += i

return sumOfPrimes


def solution(n):
def solution(n: int = 2000000) -> int:
"""Returns the sum of all the primes below n.

# The code below has been commented due to slow execution affecting Travis.
Expand All @@ -43,7 +42,16 @@ def solution(n):
>>> solution(7)
10
"""
return sum_of_primes(n)
if n > 2:
sum_of_primes = 2
else:
return 0

for i in range(3, n, 2):
if is_prime(i):
sum_of_primes += i

return sum_of_primes


if __name__ == "__main__":
Expand Down
25 changes: 19 additions & 6 deletions project_euler/problem_10/sol2.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,41 @@
"""
https://projecteuler.net/problem=10

Problem Statement:
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.
"""
import math
from itertools import takewhile


def primeCheck(number):
from typing import Iterator


def is_prime(number: int) -> bool:
"""Returns boolean representing primality of given number num.
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
"""
if number % 2 == 0 and number > 2:
return False
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))


def prime_generator():
def prime_generator() -> Iterator[int]:
num = 2
while True:
if primeCheck(num):
if is_prime(num):
yield num
num += 1


def solution(n):
def solution(n: int = 2000000) -> int:
"""Returns the sum of all the primes below n.

# The code below has been commented due to slow execution affecting Travis.
Expand Down
51 changes: 25 additions & 26 deletions project_euler/problem_10/sol3.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,55 +4,54 @@
Problem Statement:
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million using Sieve_of_Eratosthenes:

The sieve of Eratosthenes is one of the most efficient ways to find all primes
smaller than n when n is smaller than 10 million. Only for positive numbers.
Find the sum of all the primes below two million.
"""


def prime_sum(n: int) -> int:
"""Returns the sum of all the primes below n.
def solution(n: int = 2000000) -> int:
"""Returns the sum of all the primes below n using Sieve of Eratosthenes:

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
The sieve of Eratosthenes is one of the most efficient ways to find all primes
smaller than n when n is smaller than 10 million. Only for positive numbers.

>>> prime_sum(2_000_000)
>>> solution(2_000_000)
142913828922
>>> prime_sum(1_000)
>>> solution(1_000)
76127
>>> prime_sum(5_000)
>>> solution(5_000)
1548136
>>> prime_sum(10_000)
>>> solution(10_000)
5736396
>>> prime_sum(7)
>>> solution(7)
10
>>> prime_sum(7.1) # doctest: +ELLIPSIS
>>> solution(7.1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> prime_sum(-7) # doctest: +ELLIPSIS
>>> solution(-7) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
IndexError: list assignment index out of range
>>> prime_sum("seven") # doctest: +ELLIPSIS
>>> solution("seven") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: can only concatenate str (not "int") to str
"""
list_ = [0 for i in range(n + 1)]
list_[0] = 1
list_[1] = 1
primality_list = [0 for i in range(n + 1)]
primality_list[0] = 1
primality_list[1] = 1

for i in range(2, int(n ** 0.5) + 1):
if list_[i] == 0:
if primality_list[i] == 0:
for j in range(i * i, n + 1, i):
list_[j] = 1
s = 0
primality_list[j] = 1
sum_of_primes = 0
for i in range(n):
if list_[i] == 0:
s += i
return s
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes


if __name__ == "__main__":
# import doctest
# doctest.testmod()
print(prime_sum(int(input().strip())))
print(solution(int(input().strip())))