Skip to content

Hacktoberfest: Added Project Euler Problem 71: Fixes #2695 #2785

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from Oct 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
48 changes: 48 additions & 0 deletions project_euler/problem_71/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
"""
Ordered fractions
Problem 71
https://projecteuler.net/problem=71

Consider the fraction n/d, where n and d are positive
integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d ≤ 8
in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7,
1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that 2/5 is the fraction immediately to the left of 3/7.

By listing the set of reduced proper fractions for d ≤ 1,000,000
in ascending order of size, find the numerator of the fraction
immediately to the left of 3/7.
"""


def solution(numerator: int = 3, denominator: int = 7, limit: int = 1000000) -> int:
"""
Returns the closest numerator of the fraction immediately to the
left of given fraction (numerator/denominator) from a list of reduced
proper fractions.
>>> solution()
428570
>>> solution(3, 7, 8)
2
>>> solution(6, 7, 60)
47
"""
max_numerator = 0
max_denominator = 1

for current_denominator in range(1, limit + 1):
current_numerator = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
max_numerator = current_numerator
max_denominator = current_denominator
return max_numerator


if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))