Skip to content

feat: added prim's algorithm v2 #2742

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 10, 2020
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,7 @@
* [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py)
* [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py)
* [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py)
* [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py)
* [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py)
* [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py)
* [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py)
Expand Down Expand Up @@ -547,6 +548,8 @@
* Problem 11
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py)
* [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py)
* Problem 112
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py)
* Problem 12
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py)
* [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py)
Expand Down Expand Up @@ -691,7 +694,6 @@
* [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py)
* [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py)
* [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py)
* [I Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/i_sort.py)
* [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py)
* [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py)
* [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py)
Expand Down
262 changes: 262 additions & 0 deletions graphs/minimum_spanning_tree_prims2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
from sys import maxsize
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ruppysuppy this repository is for educational purpose, so kindly add a description of your work

from typing import Dict, Optional, Tuple, Union


def get_parent_position(position: int) -> int:
"""
heap helper function get the position of the parent of the current node

>>> get_parent_position(1)
0
>>> get_parent_position(2)
0
"""
return (position - 1) // 2


def get_child_left_position(position: int) -> int:
"""
heap helper function get the position of the left child of the current node

>>> get_child_left_position(0)
1
"""
return (2 * position) + 1


def get_child_right_position(position: int) -> int:
"""
heap helper function get the position of the right child of the current node

>>> get_child_right_position(0)
2
"""
return (2 * position) + 2


class MinPriorityQueue:
"""
Minimum Priority Queue Class

Functions:
is_empty: function to check if the priority queue is empty
push: function to add an element with given priority to the queue
extract_min: function to remove and return the element with lowest weight (highest
priority)
update_key: function to update the weight of the given key
_bubble_up: helper function to place a node at the proper position (upward
movement)
_bubble_down: helper function to place a node at the proper position (downward
movement)
_swap_nodes: helper function to swap the nodes at the given positions

>>> queue = MinPriorityQueue()

>>> queue.push(1, 1000)
>>> queue.push(2, 100)
>>> queue.push(3, 4000)
>>> queue.push(4, 3000)

>>> print(queue.extract_min())
2

>>> queue.update_key(4, 50)

>>> print(queue.extract_min())
4
>>> print(queue.extract_min())
1
>>> print(queue.extract_min())
3
"""

def __init__(self) -> None:
self.heap = []
self.position_map = {}
self.elements = 0

def __len__(self) -> int:
return self.elements

def __repr__(self) -> str:
return str(self.heap)

def is_empty(self) -> bool:
# Check if the priority queue is empty
return self.elements == 0

def push(self, elem: Union[int, str], weight: int) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
self.position_map[elem] = self.elements
self.elements += 1
self._bubble_up(elem)

def extract_min(self) -> Union[int, str]:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0, self.elements - 1)
elem, _ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
bubble_down_elem, _ = self.heap[0]
self._bubble_down(bubble_down_elem)
return elem

def update_key(self, elem: Union[int, str], weight: int) -> None:
# Update the weight of the given key
position = self.position_map[elem]
self.heap[position] = (elem, weight)
if position > 0:
parent_position = get_parent_position(position)
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(elem)
else:
self._bubble_down(elem)
else:
self._bubble_down(elem)

def _bubble_up(self, elem: Union[int, str]) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
curr_pos = self.position_map[elem]
if curr_pos == 0:
return
parent_position = get_parent_position(curr_pos)
_, weight = self.heap[curr_pos]
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(parent_position, curr_pos)
return self._bubble_up(elem)
return

def _bubble_down(self, elem: Union[int, str]) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
curr_pos = self.position_map[elem]
_, weight = self.heap[curr_pos]
child_left_position = get_child_left_position(curr_pos)
child_right_position = get_child_right_position(curr_pos)
if child_left_position < self.elements and child_right_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < child_left_weight:
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
if child_left_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(child_left_position, curr_pos)
return self._bubble_down(elem)
else:
return
if child_right_position < self.elements:
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
else:
return

def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
# Swap the nodes at the given positions
node1_elem = self.heap[node1_pos][0]
node2_elem = self.heap[node2_pos][0]
self.heap[node1_pos], self.heap[node2_pos] = (
self.heap[node2_pos],
self.heap[node1_pos],
)
self.position_map[node1_elem] = node2_pos
self.position_map[node2_elem] = node1_pos


class GraphUndirectedWeighted:
"""
Graph Undirected Weighted Class

Functions:
add_node: function to add a node in the graph
add_edge: function to add an edge between 2 nodes in the graph
"""

def __init__(self) -> None:
self.connections = {}
self.nodes = 0

def __repr__(self) -> str:
return str(self.connections)

def __len__(self) -> int:
return self.nodes

def add_node(self, node: Union[int, str]) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
self.connections[node] = {}
self.nodes += 1

def add_edge(
self, node1: Union[int, str], node2: Union[int, str], weight: int
) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(node1)
self.add_node(node2)
self.connections[node1][node2] = weight
self.connections[node2][node1] = weight


def prims_algo(
graph: GraphUndirectedWeighted,
) -> Tuple[Dict[str, int], Dict[str, Optional[str]]]:
"""
>>> graph = GraphUndirectedWeighted()

>>> graph.add_edge("a", "b", 3)
>>> graph.add_edge("b", "c", 10)
>>> graph.add_edge("c", "d", 5)
>>> graph.add_edge("a", "c", 15)
>>> graph.add_edge("b", "d", 100)

>>> dist, parent = prims_algo(graph)

>>> abs(dist["a"] - dist["b"])
3
>>> abs(dist["d"] - dist["b"])
15
>>> abs(dist["a"] - dist["c"])
13
"""
# prim's algorithm for minimum spanning tree
dist = {node: maxsize for node in graph.connections}
parent = {node: None for node in graph.connections}
priority_queue = MinPriorityQueue()
[priority_queue.push(node, weight) for node, weight in dist.items()]
if priority_queue.is_empty():
return dist, parent

# initialization
node = priority_queue.extract_min()
dist[node] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
dist[neighbour] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(neighbour, dist[neighbour])
parent[neighbour] = node
# running prim's algorithm
while not priority_queue.is_empty():
node = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
dist[neighbour] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(neighbour, dist[neighbour])
parent[neighbour] = node
return dist, parent


if __name__ == "__main__":
from doctest import testmod

testmod()