Skip to content

Add merge insertion sort #2211

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from Jul 20, 2020
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions sorts/merge_insertion_sort.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
"""
This is a pure Python implementation of the quick sort algorithm

For doctests run following command:
python -m doctest -v merge_insertion_sort.py
or
python3 -m doctest -v merge_insertion_sort.py

For manual testing run:
python merge_insertion_sort.py
"""


def merge_insertion_sort(collection):
"""Pure implementation of merge-insertion sort algorithm in Python

:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending

Examples:
>>> merge_insertion_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]

>>> merge_insertion_sort([])
[]

>>> merge_insertion_sort([-2, -5, -45])
[-45, -5, -2]
"""

def binary_search_insertion(sorted_list, item):
left = 0
right = len(sorted_list) - 1
while left <= right:
middle = (left + right) // 2
if left == right:
if sorted_list[middle] < item:
left = middle + 1
break
else:
break
elif sorted_list[middle] < item:
left = middle + 1
else:
right = middle - 1
sorted_list.insert(left, item)
return sorted_list

def sortlist_2d(list_2d):
def merge(left, right):
result = []
while left and right:
if left[0][0] < right[0][0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))
return result + left + right

length = len(list_2d)
if length <= 1:
return list_2d
middle = length // 2
return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))

if len(collection) <= 1:
return collection

two_paired_list = []
is_surplus = False
for i in range(0, len(collection), 2):
if i == len(collection) - 1:
is_surplus = True
else:
if collection[i] < collection[i + 1]:
two_paired_list.append([collection[i], collection[i + 1]])
else:
two_paired_list.append([collection[i + 1], collection[i]])
sorted_list_2d = sortlist_2d(two_paired_list)
result = [i[0] for i in sorted_list_2d]
result.append(sorted_list_2d[-1][1])

if is_surplus:
pivot = collection[-1]
result = binary_search_insertion(result, pivot)

is_surplus_inserted_before_this_index = False
for i in range(len(sorted_list_2d) - 1):
if result[i] == collection[-i]:
is_surplus_inserted_before_this_index = True
pivot = sorted_list_2d[i][1]
if is_surplus_inserted_before_this_index:
result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot)
else:
result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot)

return result


if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(merge_insertion_sort(unsorted))