Skip to content

New Code!!(Finding the N Possible Binary Search Tree and Binary Tree from Given N node Number) #1663

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 7, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions data_structures/binary_tree/number_of_possible_binary_trees.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
"""
Hey, we are going to find an exciting number called Catalan number which is use to find
the number of possible binary search trees from tree of a given number of nodes.

We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)

Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
"""
"""
Our Contribution:
Basically we Create the 2 function:
1. catalan_number(node_count: int) -> int
Returns the number of possible binary search trees for n nodes.
2. binary_tree_count(node_count: int) -> int
Returns the number of possible binary trees for n nodes.
"""


def binomial_coefficient(n: int, k: int) -> int:
"""
Since Here we Find the Binomial Coefficient:
https://en.wikipedia.org/wiki/Binomial_coefficient
C(n,k) = n! / k!(n-k)!
:param n: 2 times of Number of nodes
:param k: Number of nodes
:return: Integer Value

>>> binomial_coefficient(4, 2)
6
"""
result = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
k = n - k
# Calculate C(n,k)
for i in range(k):
result *= n - i
result //= i + 1
return result


def catalan_number(node_count: int) -> int:
"""
We can find Catalan number many ways but here we use Binomial Coefficent because it
does the job in O(n)

return the Catalan number of n using 2nCn/(n+1).
:param n: number of nodes
:return: Catalan number of n nodes

>>> catalan_number(5)
42
>>> catalan_number(6)
132
"""
return binomial_coefficient(2 * node_count, node_count) // (node_count + 1)


def factorial(n: int) -> int:
"""
Return the factorial of a number.
:param n: Number to find the Factorial of.
:return: Factorial of n.

>>> import math
>>> all(factorial(i) == math.factorial(i) for i in range(10))
True
>>> factorial(-5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: factorial() not defined for negative values
"""
if n < 0:
raise ValueError("factorial() not defined for negative values")
result = 1
for i in range(1, n + 1):
result *= i
return result


def binary_tree_count(node_count: int) -> int:
"""
Return the number of possible of binary trees.
:param n: number of nodes
:return: Number of possilble binary trees

>>> binary_tree_count(5)
5040
>>> binary_tree_count(6)
95040
"""
return catalan_number(node_count) * factorial(node_count)


if __name__ == "__main__":
node_count = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
f"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
f"binary trees and {catalan_number(node_count)} binary search trees."
)