Skip to content

Improved Fibonacci Algorithm Implementation #12587

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
363 changes: 42 additions & 321 deletions maths/fibonacci.py
Original file line number Diff line number Diff line change
@@ -1,332 +1,53 @@
"""
Calculates the Fibonacci sequence using iteration, recursion, memoization,
and a simplified form of Binet's formula

NOTE 1: the iterative, recursive, memoization functions are more accurate than
the Binet's formula function because the Binet formula function uses floats

NOTE 2: the Binet's formula function is much more limited in the size of inputs
that it can handle due to the size limitations of Python floats
NOTE 3: the matrix function is the fastest and most memory efficient for large n


See benchmark numbers in __main__ for performance comparisons/
https://en.wikipedia.org/wiki/Fibonacci_number for more information
"""

import functools
from collections.abc import Iterator
from math import sqrt
from time import time

import numpy as np
from numpy import ndarray


def time_func(func, *args, **kwargs):
"""
Times the execution of a function with parameters
"""
start = time()
output = func(*args, **kwargs)
end = time()
if int(end - start) > 0:
print(f"{func.__name__} runtime: {(end - start):0.4f} s")
else:
print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms")
return output


def fib_iterative_yield(n: int) -> Iterator[int]:
"""
Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield
>>> list(fib_iterative_yield(0))
[0]
>>> tuple(fib_iterative_yield(1))
(0, 1)
>>> tuple(fib_iterative_yield(5))
(0, 1, 1, 2, 3, 5)
>>> tuple(fib_iterative_yield(10))
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55)
>>> tuple(fib_iterative_yield(-1))
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
a, b = 0, 1
yield a
for _ in range(n):
yield b
a, b = b, a + b


def fib_iterative(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using iteration
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
def fibonacci(n, method="iterative"):
"""
if n < 0:
raise ValueError("n is negative")
if n == 0:
return [0]
fib = [0, 1]
for _ in range(n - 1):
fib.append(fib[-1] + fib[-2])
return fib


def fib_recursive(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using recursion
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""

def fib_recursive_term(i: int) -> int:
"""
Calculates the i-th (0-indexed) Fibonacci number using recursion
>>> fib_recursive_term(0)
0
>>> fib_recursive_term(1)
1
>>> fib_recursive_term(5)
5
>>> fib_recursive_term(10)
55
>>> fib_recursive_term(-1)
Traceback (most recent call last):
...
Exception: n is negative
"""
if i < 0:
raise ValueError("n is negative")
if i < 2:
return i
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)

if n < 0:
raise ValueError("n is negative")
return [fib_recursive_term(i) for i in range(n + 1)]


def fib_recursive_cached(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using recursion
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""

@functools.cache
def fib_recursive_term(i: int) -> int:
"""
Calculates the i-th (0-indexed) Fibonacci number using recursion
"""
if i < 0:
raise ValueError("n is negative")
if i < 2:
return i
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)

if n < 0:
raise ValueError("n is negative")
return [fib_recursive_term(i) for i in range(n + 1)]
Compute the Fibonacci number using the specified method.


def fib_memoization(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using memoization
>>> fib_memoization(0)
[0]
>>> fib_memoization(1)
[0, 1]
>>> fib_memoization(5)
[0, 1, 1, 2, 3, 5]
>>> fib_memoization(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
# Cache must be outside recursuive function
# other it will reset every time it calls itself.
cache: dict[int, int] = {0: 0, 1: 1, 2: 1} # Prefilled cache

def rec_fn_memoized(num: int) -> int:
if num in cache:
return cache[num]

value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2)
cache[num] = value
return value

return [rec_fn_memoized(i) for i in range(n + 1)]


def fib_binet(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
of Binet's formula:
https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding

NOTE 1: this function diverges from fib_iterative at around n = 71, likely
due to compounding floating-point arithmetic errors

NOTE 2: this function doesn't accept n >= 1475 because it overflows
thereafter due to the size limitations of Python floats
>>> fib_binet(0)
[0]
>>> fib_binet(1)
[0, 1]
>>> fib_binet(5)
[0, 1, 1, 2, 3, 5]
>>> fib_binet(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_binet(-1)
Traceback (most recent call last):
...
ValueError: n is negative
>>> fib_binet(1475)
Traceback (most recent call last):
...
ValueError: n is too large
"""
if n < 0:
raise ValueError("n is negative")
if n >= 1475:
raise ValueError("n is too large")
sqrt_5 = sqrt(5)
phi = (1 + sqrt_5) / 2
return [round(phi**i / sqrt_5) for i in range(n + 1)]


def matrix_pow_np(m: ndarray, power: int) -> ndarray:
"""
Raises a matrix to the power of 'power' using binary exponentiation.

Args:
m: Matrix as a numpy array.
power: The power to which the matrix is to be raised.
Parameters:
- n (int): The nth Fibonacci number to calculate.
- method (str): The method to use ("iterative", "recursive", "memoized").

Returns:
The matrix raised to the power.

Raises:
ValueError: If power is negative.

>>> m = np.array([[1, 1], [1, 0]], dtype=int)
>>> matrix_pow_np(m, 0) # Identity matrix when raised to the power of 0
array([[1, 0],
[0, 1]])

>>> matrix_pow_np(m, 1) # Same matrix when raised to the power of 1
array([[1, 1],
[1, 0]])

>>> matrix_pow_np(m, 5)
array([[8, 5],
[5, 3]])

>>> matrix_pow_np(m, -1)
Traceback (most recent call last):
...
ValueError: power is negative
"""
result = np.array([[1, 0], [0, 1]], dtype=int) # Identity Matrix
base = m
if power < 0: # Negative power is not allowed
raise ValueError("power is negative")
while power:
if power % 2 == 1:
result = np.dot(result, base)
base = np.dot(base, base)
power //= 2
return result


def fib_matrix_np(n: int) -> int:
- int: The nth Fibonacci number.
"""
Calculates the n-th Fibonacci number using matrix exponentiation.
https://www.nayuki.io/page/fast-fibonacci-algorithms#:~:text=
Summary:%20The%20two%20fast%20Fibonacci%20algorithms%20are%20matrix

Args:
n: Fibonacci sequence index

Returns:
The n-th Fibonacci number.

Raises:
ValueError: If n is negative.

>>> fib_matrix_np(0)
0
>>> fib_matrix_np(1)
1
>>> fib_matrix_np(5)
5
>>> fib_matrix_np(10)
55
>>> fib_matrix_np(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
if n == 0:
return 0
raise ValueError("Input must be a non-negative integer.")

# Iterative Approach (Default)
if method == "iterative":
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a

# Recursive Approach
elif method == "recursive":
if n == 0:
return 0
elif n == 1:
return 1
return fibonacci(n - 1, "recursive") + fibonacci(n - 2, "recursive")

# Memoized Approach
elif method == "memoized":
memo = {}

def fib_memo(n):
if n in memo:
return memo[n]
if n <= 1:
return n
memo[n] = fib_memo(n - 1) + fib_memo(n - 2)
return memo[n]

return fib_memo(n)

m = np.array([[1, 1], [1, 0]], dtype=int)
result = matrix_pow_np(m, n - 1)
return int(result[0, 0])
else:
raise ValueError("Invalid method. Choose 'iterative', 'recursive', or 'memoized'.")

Check failure on line 46 in maths/fibonacci.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

maths/fibonacci.py:46:89: E501 Line too long (91 > 88)

Check failure on line 46 in maths/fibonacci.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

maths/fibonacci.py:46:89: E501 Line too long (91 > 88)


# Example Usage:
if __name__ == "__main__":
from doctest import testmod

testmod()
# Time on an M1 MacBook Pro -- Fastest to slowest
num = 30
time_func(fib_iterative_yield, num) # 0.0012 ms
time_func(fib_iterative, num) # 0.0031 ms
time_func(fib_binet, num) # 0.0062 ms
time_func(fib_memoization, num) # 0.0100 ms
time_func(fib_recursive_cached, num) # 0.0153 ms
time_func(fib_recursive, num) # 257.0910 ms
time_func(fib_matrix_np, num) # 0.0000 ms
print(fibonacci(10)) # Default (iterative)
print(fibonacci(10, "recursive")) # Recursive method
print(fibonacci(10, "memoized")) # Memoized method
Loading