Skip to content

Generative Adversarial Network for MNIST Dataset #11960

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
274 changes: 274 additions & 0 deletions computer_vision/Generative_Adversarial_Network_MNIST.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
"""

Check failure on line 1 in computer_vision/Generative_Adversarial_Network_MNIST.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N999)

computer_vision/Generative_Adversarial_Network_MNIST.py:1:1: N999 Invalid module name: 'Generative_Adversarial_Network_MNIST'
Generative Adversarial Network

Objective : To train a GAN model to generate handwritten digits that can be transferred to other domains.

Check failure on line 4 in computer_vision/Generative_Adversarial_Network_MNIST.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

computer_vision/Generative_Adversarial_Network_MNIST.py:4:89: E501 Line too long (105 > 88)

Resources GAN Theory :
https://en.wikipedia.org/wiki/Generative_adversarial_network
Resources PyTorch: https://pytorch.org/

Download dataset from :
PyTorch internal function

1. Fetch the Dataset with PyTorch function.
2. Create Dataloader.
3. Create Discriminator and Generator.
4. Set the hyperparameters and models.
5. Set the loss functions.
6. Create the training loop.
7. Visualize the losses.
8. Visualize the result from GAN.

"""




%matplotlib inline

Check failure on line 27 in computer_vision/Generative_Adversarial_Network_MNIST.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff

computer_vision/Generative_Adversarial_Network_MNIST.py:27:1: SyntaxError: Expected a statement

Check failure on line 27 in computer_vision/Generative_Adversarial_Network_MNIST.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff

computer_vision/Generative_Adversarial_Network_MNIST.py:27:13: SyntaxError: Simple statements must be separated by newlines or semicolons

import numpy as np
import torch
import matplotlib.pyplot as plt
from torchvision import datasets
import torchvision.transforms as transforms

# number of subprocesses to use for data loading
num_workers = 0
# how many samples per batch to load
batch_size = 64

# convert data to torch.FloatTensor
transform = transforms.ToTensor()

# get the training datasets
train_data = datasets.MNIST(root='data', train=True,
download=True, transform=transform)

# prepare data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
num_workers=num_workers)

import torch.nn as nn
import torch.nn.functional as F

# Creating Generator and Discriminator for GAN

class discriminator(nn.Module):
def __init__(self,input_size,output_size,hidden_dim):
super(discriminator,self).__init__()

#defining the layers of the discriminator
self.fc1 = nn.Linear(input_size,hidden_dim*4)
self.fc2 = nn.Linear(hidden_dim*4,hidden_dim*2)
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim)
#final fully connected layer
self.fc4 = nn.Linear(hidden_dim,output_size)
#dropout layer
self.dropout = nn.Dropout(0.2)

def forward(self,x):
# pass x through all layers
# apply leaky relu activation to all hidden layers
x = x.view(-1,28*28) #flattening the image
x = F.leaky_relu(self.fc1(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x),0.2)
x = self.dropout(x)
x_out = self.fc4(x)

return x_out

class generator(nn.Module):

def __init__(self, input_size, output_size,hidden_dim):
super(generator, self).__init__()

# define all layers
self.fc1 = nn.Linear(input_size,hidden_dim)
self.fc2 = nn.Linear(hidden_dim,hidden_dim*2)
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim*4)
#final layer
self.fc4 = nn.Linear(hidden_dim*4,output_size)
#dropout layer
self.dropout = nn.Dropout(0.2)


def forward(self, x):
# pass x through all layers
# final layer should have tanh applied
x = F.leaky_relu(self.fc1(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x),0.2)
x = self.dropout(x)
x_out = F.tanh(self.fc4(x))
return x_out

# Calculate losses
def real_loss(D_out, smooth=False):
# compare logits to real labels
# smooth labels if smooth=True
#puting it into cuda
batch_size = D_out.size(0)
if smooth:
labels = torch.ones(batch_size).cuda()*0.9
else:
labels = torch.ones(batch_size).cuda()
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(),labels)
return loss

def fake_loss(D_out):
# compare logits to fake labels
batch_size = D_out.size(0)
labels = torch.zeros(batch_size).cuda()
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(),labels)
return loss

# Discriminator hyperparams
# Size of input image to discriminator (28*28)
input_size = 784
# Size of discriminator output (real or fake)
d_output_size = 1
# Size of *last* hidden layer in the discriminator
d_hidden_size = 32

# Generator hyperparams

# Size of latent vector to give to generator
z_size = 100
# Size of discriminator output (generated image)
g_output_size = 784
# Size of *first* hidden layer in the generator
g_hidden_size = 32

# instantiate discriminator and generator and put it in cuda mode
D = discriminator(input_size, d_output_size,d_hidden_size).cuda()
G = generator(z_size, g_output_size, g_hidden_size).cuda()

import pickle as pkl

# training hyperparams
num_epochs = 40

# keep track of loss and generated, "fake" samples
samples = []
losses = []

print_every = 400

# Get some fixed data for sampling. These are images that are held
# constant throughout training, and allow us to inspect the model's performance
sample_size=16
fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size))
fixed_z = torch.from_numpy(fixed_z).float().cuda()

# train the network
D.train()
G.train()
for epoch in range(num_epochs):

for batch_i, (real_images, _) in enumerate(train_loader):

batch_size = real_images.size(0)

## Important rescaling step ##
real_images = (real_images*2 - 1).cuda() # rescale input images from [0,1) to [-1, 1)

Check failure on line 180 in computer_vision/Generative_Adversarial_Network_MNIST.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

computer_vision/Generative_Adversarial_Network_MNIST.py:180:89: E501 Line too long (94 > 88)

# ============================================
# TRAIN THE DISCRIMINATOR
# ============================================
d_optimizer.zero_grad()
# 1. Train with real images

# Compute the discriminator losses on real images
# use smoothed labels
D_real = D(real_images)
d_real_loss = real_loss(D_real,smooth=True)
# 2. Train with fake images

# Generate fake images
z = np.random.uniform(-1, 1, size=(batch_size, z_size))
z = torch.from_numpy(z).float().cuda()
fake_images = G(z)

# Compute the discriminator losses on fake images
D_fake = D(fake_images)
d_fake_loss = fake_loss(D_fake)
# add up real and fake losses and perform backprop
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
d_optimizer.step()


# =========================================
# TRAIN THE GENERATOR
# =========================================
g_optimizer.zero_grad()
# 1. Train with fake images and flipped labels

# Generate fake images
z = np.random.uniform(-1, 1, size=(batch_size, z_size))
z = torch.from_numpy(z).float().cuda()
fake_images = G(z)
# Compute the discriminator losses on fake images
# using flipped labels!
D_fake = D(fake_images)
# perform backprop
g_loss = real_loss(D_fake)
g_loss.backward()
g_optimizer.step()


# Print some loss stats
if batch_i % print_every == 0:
# print discriminator and generator loss
print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.format(
epoch+1, num_epochs, d_loss.item(), g_loss.item()))


## AFTER EACH EPOCH##
# append discriminator loss and generator loss
losses.append((d_loss.item(), g_loss.item()))

# generate and save sample, fake images
G.eval() # eval mode for generating samples
samples_z = G(fixed_z)
samples.append(samples_z)
G.train() # back to train mode


# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
pkl.dump(samples, f)

#ploting Discriminator and Generator loss
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator')
plt.plot(losses.T[1], label='Generator')
plt.title("Training Losses")
plt.legend()
plt.show()


#Viewing the results of the GAN
def view_samples(epoch, samples):

fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True)
fig.suptitle("Generated Digits")
for ax, img in zip(axes.flatten(), samples[epoch]):
img = img.detach().cpu().numpy()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(img.reshape((28,28)), cmap='Greys_r')

with open('train_samples.pkl', 'rb') as f:
samples = pkl.load(f)

view_samples(-1,samples)
plt.show()
Loading