Skip to content

implementation of gaussian process regression #11780

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions machine_learning/gaussian_process_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import numpy as np
from scipy.optimize import minimize


class GaussianProcessRegressor:
def __init__(self, kernel="rbf", noise=1e-8):
"""
Initialize the Gaussian Process Regressor.

Args:
kernel (str): The type of kernel to use. Currently only 'rbf' is implemented.
noise (float): The noise level for the diagonal of the covariance matrix.
"""
self.kernel = kernel
self.noise = noise
self.X_train = None
self.y_train = None
self.params = None

def rad_basf_kernel(self, X1, X2, l=1.0, sigma_f=1.0):

Check failure on line 20 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/gaussian_process_regression.py:20:31: N803 Argument name `X1` should be lowercase

Check failure on line 20 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/gaussian_process_regression.py:20:35: N803 Argument name `X2` should be lowercase

Check failure on line 20 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E741)

machine_learning/gaussian_process_regression.py:20:39: E741 Ambiguous variable name: `l`
"""
Radial Basis Function (RBF) kernel, also known as squared exponential kernel.

K(x, x') = σ^2 * exp(-1/(2l^2) * ||x - x'||^2)

Check failure on line 24 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (RUF002)

machine_learning/gaussian_process_regression.py:24:20: RUF002 Docstring contains ambiguous `σ` (GREEK SMALL LETTER SIGMA). Did you mean `o` (LATIN SMALL LETTER O)?

Args:
X1, X2 (numpy.ndarray): Input arrays
l (float): Length scale parameter
sigma_f (float): Signal variance parameter

Returns:
numpy.ndarray: Kernel matrix
"""
sqdist = (
np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T)
)
return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist)

def negative_log_likelihood(self, params):
"""
Compute the negative log likelihood.
This is the function we want to minimize to find optimal kernel parameters.

Args:
params (list): List containing kernel parameters [l, sigma_f]

Returns:
float: Negative log likelihood
"""
l, sigma_f = params

Check failure on line 50 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E741)

machine_learning/gaussian_process_regression.py:50:9: E741 Ambiguous variable name: `l`
K = self.rad_basf_kernel(

Check failure on line 51 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/gaussian_process_regression.py:51:9: N806 Variable `K` in function should be lowercase
self.X_train, self.X_train, l, sigma_f
) + self.noise**2 * np.eye(len(self.X_train))
return (
0.5 * np.log(np.linalg.det(K))
+ 0.5 * self.y_train.T.dot(np.linalg.inv(K).dot(self.y_train))
+ 0.5 * len(self.X_train) * np.log(2 * np.pi)
)

def fit_function(self, X, y):

Check failure on line 60 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/gaussian_process_regression.py:60:28: N803 Argument name `X` should be lowercase
"""
Fit the GPR model to the training data.

Args:
X (numpy.ndarray): Training input data
y (numpy.ndarray): Training target data
"""
self.X_train = X
self.y_train = y

# Optimize kernel parameters using L-BFGS-B algorithm
res = minimize(
self.negative_log_likelihood,
[1, 1],
bounds=((1e-5, None), (1e-5, None)),
method="L-BFGS-B",
)
self.params = res.x

def predict_func(self, X_test, return_std=False):

Check failure on line 80 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/gaussian_process_regression.py:80:28: N803 Argument name `X_test` should be lowercase
"""
Make predictions on test data.

Args:
X_test (numpy.ndarray): Test input data
return_std (bool): If True, return standard deviation along with mean

Returns:
tuple or numpy.ndarray: Mean predictions (and standard deviations if return_std=True)

Check failure on line 89 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

machine_learning/gaussian_process_regression.py:89:89: E501 Line too long (93 > 88)
"""
l, sigma_f = self.params

Check failure on line 91 in machine_learning/gaussian_process_regression.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E741)

machine_learning/gaussian_process_regression.py:91:9: E741 Ambiguous variable name: `l`

# Compute relevant kernel matrices
K = self.rad_basf_kernel(
self.X_train, self.X_train, l, sigma_f
) + self.noise**2 * np.eye(len(self.X_train))
K_s = self.rad_basf_kernel(self.X_train, X_test, l, sigma_f)
K_ss = self.rad_basf_kernel(X_test, X_test, l, sigma_f) + 1e-8 * np.eye(
len(X_test)
)

K_inv = np.linalg.inv(K)

# Compute predictive mean
mu_s = K_s.T.dot(K_inv).dot(self.y_train)

# Compute predictive variance
var_s = K_ss - K_s.T.dot(K_inv).dot(K_s)

return (mu_s, np.sqrt(np.diag(var_s))) if return_std else mu_s


# Example usage
if __name__ == "__main__":
# Generate some sample data
X = np.array([1, 3, 5, 6, 7, 8]).reshape(-1, 1)
y = np.sin(X).ravel()

# Create and fit the model
gpr = GaussianProcessRegressor()
gpr.fit_func(X, y)

# Make predictions
X_test = np.linspace(0, 10, 100).reshape(-1, 1)
mu_s, std_s = gpr.predict_func(X_test, return_std=True)

print("Predicted mean output:", mu_s)
print("Predicted standard deviation output:", std_s)

# Note: To visualize results, you would typically use matplotlib here
# to plot the original data, predictions, and confidence intervals