Skip to content

Adds hinge loss function algorithm #10628

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Oct 18, 2023
64 changes: 64 additions & 0 deletions machine_learning/loss_functions/hinge_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
"""
Hinge Loss

Description:
Compute the Hinge loss used for training SVM (Support Vector Machine).

Formula:
loss = max(0, 1 - true * pred)

Reference: https://en.wikipedia.org/wiki/Hinge_loss

Author: Poojan Smart
Email: [email protected]
"""

import numpy as np


def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the mean hinge loss for y_true and y_pred for binary classification.

Args:
y_true: Array of actual values (ground truth) encoded as -1 and 1.
y_pred: Array of predicted values.

Returns:
The hinge loss between y_true and y_pred.

Examples:
>>> y_true = np.array([-1, 1, 1, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
1.52
>>> y_true = np.array([-1, 1, 1, -1, 1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: Length of predicted and actual array must be same.
>>> y_true = np.array([-1, 1, 10, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: y_true can have values -1 or 1 only.
"""

if len(y_true) != len(y_pred):
raise ValueError("Length of predicted and actual array must be same.")

# Raise value error when y_true (encoded labels) have any other values
# than -1 and 1
if np.any((y_true != -1) & (y_true != 1)):
raise ValueError("y_true can have values -1 or 1 only.")

hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
return np.mean(hinge_losses)


if __name__ == "__main__":
import doctest

doctest.testmod()