Skip to content

Performance: 80% faster Project Euler 145 #10445

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 14, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 63 additions & 7 deletions project_euler/problem_145/sol1.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,17 +17,17 @@
ODD_DIGITS = [1, 3, 5, 7, 9]


def reversible_numbers(
def slow_reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
"""
Count the number of reversible numbers of given length.
Iterate over possible digits considering parity of current sum remainder.
>>> reversible_numbers(1, 0, [0], 1)
>>> slow_reversible_numbers(1, 0, [0], 1)
0
>>> reversible_numbers(2, 0, [0] * 2, 2)
>>> slow_reversible_numbers(2, 0, [0] * 2, 2)
20
>>> reversible_numbers(3, 0, [0] * 3, 3)
>>> slow_reversible_numbers(3, 0, [0] * 3, 3)
100
"""
if remaining_length == 0:
Expand All @@ -51,7 +51,7 @@ def reversible_numbers(
result = 0
for digit in range(10):
digits[length // 2] = digit
result += reversible_numbers(
result += slow_reversible_numbers(
0, (remainder + 2 * digit) // 10, digits, length
)
return result
Expand All @@ -67,7 +67,7 @@ def reversible_numbers(

for digit2 in other_parity_digits:
digits[(length - remaining_length) // 2] = digit2
result += reversible_numbers(
result += slow_reversible_numbers(
remaining_length - 2,
(remainder + digit1 + digit2) // 10,
digits,
Expand All @@ -76,6 +76,42 @@ def reversible_numbers(
return result


def slow_solution(max_power: int = 9) -> int:
"""
To evaluate the solution, use solution()
>>> slow_solution(3)
120
>>> slow_solution(6)
18720
>>> slow_solution(7)
68720
"""
result = 0
for length in range(1, max_power + 1):
result += slow_reversible_numbers(length, 0, [0] * length, length)
return result


def reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
"""
Count the number of reversible numbers of given length.
Iterate over possible digits considering parity of current sum remainder.
>>> reversible_numbers(1, 0, [0], 1)
0
>>> reversible_numbers(2, 0, [0] * 2, 2)
20
>>> reversible_numbers(3, 0, [0] * 3, 3)
100
"""
# There exist no reversible 1, 5, 9, 13 (ie. 4k+1) digit numbers
if (length - 1) % 4 == 0:
return 0

return slow_reversible_numbers(length, 0, [0] * length, length)


def solution(max_power: int = 9) -> int:
"""
To evaluate the solution, use solution()
Expand All @@ -92,5 +128,25 @@ def solution(max_power: int = 9) -> int:
return result


def benchmark() -> None:
"""
Benchmarks
"""
# Running performance benchmarks...
# slow_solution : 292.9300301000003
# solution : 54.90970860000016

from timeit import timeit

print("Running performance benchmarks...")

print(f"slow_solution : {timeit('slow_solution()', globals=globals(), number=10)}")
print(f"solution : {timeit('solution()', globals=globals(), number=10)}")


if __name__ == "__main__":
print(f"{solution() = }")
print(f"Solution : {solution()}")
benchmark()

# for i in range(1, 15):
# print(f"{i}. {reversible_numbers(i, 0, [0]*i, i)}")