Skip to content

added rkf45 method #10438

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 19 commits into from
Oct 15, 2023
Merged
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 119 additions & 0 deletions maths/rkf45.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
"""
Module contains an implementation of the Runge-Kutta-Fehlberg method to solve ODEs.
"""

from collections.abc import Callable


import numpy as np


class RangeError(Exception):
"Will be raised when initial x is greater than or equal to final x"


class IncrementError(Exception):
"Will be raised when value of stepsize (Increment of x) is not positive."


def runge_futta_fehlberg_45(
ode: Callable,
x_initial: float,
y_initial: float,
step_size: float,
x_final: float,
) -> np.ndarray:
"""
Solve ODE using Runge-Kutta-Fehlberg Method (rkf45) of order 5.

Reference: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

args:
ode : Ordinary Differential Equation as function of x and y.
x_initial : Initial value of x.
y_initial : Initial value of y.
step_size : Increment value of x.
x_final : Final value of x.

Returns:
np.ndarray: Solution of y at each nodal point

# exact value of y[1] is tan(0.2) = 0.2027100355086
>>> def f(x,y):
... return 1+y**2
>>> y = runge_futta_fehlberg_45(f, 0, 0, 0.2, 1)
>>> y[1]
0.2027100937470787
>>> def f(x,y):
... return 5
>>> y = runge_futta_fehlberg_45(f, 0, 0, 0.1, 1)
>>> y[1]
0.5
>>> def f(x,y):
... return x
>>> y = runge_futta_fehlberg_45(f, -1, 0, 0.2, 0)
>>> y[1]
-0.18000000000000002
>>> def f(x,y):
... return x
>>> y = runge_futta_fehlberg_45(f, -1, 0, -0.2, 0)
Traceback (most recent call last):
IncrementError: Increament of x (step size) should be positve.
>>> def f(x,y):
... return x + y
>>> y = runge_futta_fehlberg_45(f, 0, 0, 0.2, -1)
Traceback (most recent call last):
RangeError: Final x should be greater than initial x.
"""
if x_initial >= x_final:
raise RangeError("Final x should be greater than initial x.")

if step_size == 0 or step_size < 0:
raise IncrementError("Increament of x (step size) should be positve.")

n = int((x_final - x_initial) / step_size)
y = np.zeros(
(n + 1),
)
x = np.zeros(n + 1)
y[0] = y_initial
x[0] = x_initial
for i in range(n):
k1 = step_size * ode(x[i], y[i])
k2 = step_size * ode(x[i] + step_size / 4, y[i] + k1 / 4)
k3 = step_size * ode(
x[i] + (3 / 8) * step_size, y[i] + (3 / 32) * k1 + (9 / 32) * k2
)
k4 = step_size * ode(
x[i] + (12 / 13) * step_size,
y[i] + (1932 / 2197) * k1 - (7200 / 2197) * k2 + (7296 / 2197) * k3,
)
k5 = step_size * ode(
x[i] + step_size,
y[i] + (439 / 216) * k1 - 8 * k2 + (3680 / 513) * k3 - (845 / 4104) * k4,
)
k6 = step_size * ode(
x[i] + step_size / 2,
y[i]
- (8 / 27) * k1
+ 2 * k2
- (3544 / 2565) * k3
+ (1859 / 4104) * k4
- (11 / 40) * k5,
)
y[i + 1] = (
y[i]
+ (16 / 135) * k1
+ (6656 / 12825) * k3
+ (28561 / 56430) * k4
- (9 / 50) * k5
+ (2 / 55) * k6
)
x[i + 1] = step_size + x[i]
return y


if __name__ == "__main__":
import doctest

doctest.testmod()