Skip to content

Added data_structures/arrays/sparse_table.py #10437

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Oct 15, 2023
94 changes: 94 additions & 0 deletions data_structures/arrays/sparse_table.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
"""
Sparse table is a data structure that allows answering range queries on
a static number list, i.e. the elements do not change throughout all the queries.
The implementation below will solve the problem of Range Minimum Query:
Finding the minimum value of a subset [L..R] of a static number list.
Overall time complexity: O(nlogn)
Overall space complexity: O(nlogn)
Wikipedia link: https://en.wikipedia.org/wiki/Range_minimum_query
"""
from math import log2


def build_sparse_table(number_list: list[int]) -> list[list[int]]:
"""
Precompute range minimum queries with power of two length and store the precomputed
values in a table.
>>> build_sparse_table([8, 1, 0, 3, 4, 9, 3])
[[8, 1, 0, 3, 4, 9, 3], [1, 0, 0, 3, 4, 3, 0], [0, 0, 0, 3, 0, 0, 0]]
>>> build_sparse_table([3, 1, 9])
[[3, 1, 9], [1, 1, 0]]
>>> build_sparse_table([])
Traceback (most recent call last):
...
ValueError: empty number list not allowed
"""
if not number_list:
raise ValueError("empty number list not allowed")

length = len(number_list)
# Initialise sparse_table -- sparse_table[j][i] represents the minimum value of the
# subset of length (2 ** j) of number_list, starting from index i.

# smallest power of 2 subset length that fully covers number_list
row = int(log2(length)) + 1
sparse_table = [[0 for i in range(length)] for j in range(row)]

# minimum of subset of length 1 is that value itself
for i, value in enumerate(number_list):
sparse_table[0][i] = value
j = 1

# compute the minimum value for all intervals with size (2 ** j)
while (1 << j) <= length:
i = 0
# while subset starting from i still have at least (2 ** j) elements
while (i + (1 << j) - 1) < length:
# split range [i, i + 2 ** j] and find minimum of 2 halves
sparse_table[j][i] = min(
sparse_table[j - 1][i + (1 << (j - 1))], sparse_table[j - 1][i]
)
i += 1
j += 1
return sparse_table


def query(sparse_table: list[list[int]], left_bound: int, right_bound: int) -> int:
"""
>>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 4)
0
>>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 4, 6)
3
>>> query(build_sparse_table([3, 1, 9]), 2, 2)
9
>>> query(build_sparse_table([3, 1, 9]), 0, 1)
1
>>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 11)
Traceback (most recent call last):
...
IndexError: list index out of range
>>> query(build_sparse_table([]), 0, 0)
Traceback (most recent call last):
...
ValueError: empty number list not allowed
"""
if left_bound < 0 or right_bound >= len(sparse_table[0]):
raise IndexError("list index out of range")

# highest subset length of power of 2 that is within range [left_bound, right_bound]
j = int(log2(right_bound - left_bound + 1))

# minimum of 2 overlapping smaller subsets:
# [left_bound, left_bound + 2 ** j - 1] and [right_bound - 2 ** j + 1, right_bound]
return min(sparse_table[j][right_bound - (1 << j) + 1], sparse_table[j][left_bound])


if __name__ == "__main__":
from doctest import testmod

testmod()
print(f"{query(build_sparse_table([3, 1, 9]), 2, 2) = }")