Skip to content

Adds exponential moving average algorithm #10273

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Oct 12, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions financial/exponential_moving_average.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
"""
Calculate the exponential moving average (EMA) on the series of stock prices.
Wikipedia Reference: https://en.wikipedia.org/wiki/Exponential_smoothing
https://www.investopedia.com/terms/e/ema.asp#toc-what-is-an-exponential
-moving-average-ema

Exponential moving average is used in finance to analyze changes stock prices.
EMA is used in conjunction with Simple moving average (SMA), EMA reacts to the
changes in the value quicker than SMA, which is one of the advantages of using EMA.
"""

from collections.abc import Iterator


def exponential_moving_average(
stock_prices: Iterator[float], window_size: int
) -> Iterator[float]:
"""
Yields exponential moving averages of the given stock prices.
>>> tuple(exponential_moving_average(iter([2, 5, 3, 8.2, 6, 9, 10]), 3))
(2, 3.5, 3.25, 5.725, 5.8625, 7.43125, 8.715625)

:param stock_prices: A stream of stock prices
:param window_size: The number of stock prices that will trigger a new calculation
of the exponential average (window_size > 0)
:return: Yields a sequence of exponential moving averages

Formula:

st = alpha * xt + (1 - alpha) * st_prev

Where,
st : Exponential moving average at timestamp t
xt : stock price in from the stock prices at timestamp t
st_prev : Exponential moving average at timestamp t-1
alpha : 2/(1 + window_size) - smoothing factor

Exponential moving average (EMA) is a rule of thumb technique for
smoothing time series data using an exponential window function.
"""

if window_size <= 0:
raise ValueError("window_size must be > 0")

# Calculating smoothing factor
alpha = 2 / (1 + window_size)

# Exponential average at timestamp t
moving_average = 0.0

for i, stock_price in enumerate(stock_prices):
if i <= window_size:
# Assigning simple moving average till the window_size for the first time
# is reached
moving_average = (moving_average + stock_price) * 0.5 if i else stock_price
else:
# Calculating exponential moving average based on current timestamp data
# point and previous exponential average value
moving_average = (alpha * stock_price) + ((1 - alpha) * moving_average)
yield moving_average


if __name__ == "__main__":
import doctest

doctest.testmod()

stock_prices = [2.0, 5, 3, 8.2, 6, 9, 10]
window_size = 3
result = tuple(exponential_moving_average(iter(stock_prices), window_size))
print(f"{stock_prices = }")
print(f"{window_size = }")
print(f"{result = }")