Skip to content

Added categorical_crossentropy loss function #10152

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Oct 10, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions machine_learning/loss_functions/categorical_cross_entropy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
"""
Categorical Cross-Entropy Loss
This function calculates the Categorical Cross-Entropy Loss between true class
labels and predicted class probabilities.
Formula:
Categorical Cross-Entropy Loss = -Σ(y_true * ln(y_pred))
Resources:
- [Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy)
"""

import numpy as np


def categorical_cross_entropy(
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
) -> float:
"""
Calculate Categorical Cross-Entropy Loss between true class labels and
predicted class probabilities.
Parameters:
- y_true: True class labels (one-hot encoded) as a NumPy array.
- y_pred: Predicted class probabilities as a NumPy array.
- epsilon: Small constant to avoid numerical instability.
Returns:
- ce_loss: Categorical Cross-Entropy Loss as a floating-point number.
Example:
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
>>> categorical_cross_entropy(true_labels, pred_probs)
0.567395975254385
>>> y_true = np.array([[1, 0], [0, 1]])
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_cross_entropy(y_true, y_pred)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same shape.
>>> y_true = np.array([[2, 0, 1], [1, 0, 0]])
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_cross_entropy(y_true, y_pred)
Traceback (most recent call last):
...
ValueError: y_true must be one-hot encoded.
>>> y_true = np.array([[1, 0, 1], [1, 0, 0]])
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_cross_entropy(y_true, y_pred)
Traceback (most recent call last):
...
ValueError: y_true must be one-hot encoded.
>>> y_true = np.array([[1, 0, 0], [0, 1, 0]])
>>> y_pred = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
>>> categorical_cross_entropy(y_true, y_pred)
Traceback (most recent call last):
...
ValueError: Predicted probabilities must sum to approximately 1.
"""
if y_true.shape != y_pred.shape:
raise ValueError("Input arrays must have the same shape.")

if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
raise ValueError("y_true must be one-hot encoded.")

if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
raise ValueError("Predicted probabilities must sum to approximately 1.")

# Clip predicted probabilities to avoid log(0)
y_pred = np.clip(y_pred, epsilon, 1)

# Calculate categorical cross-entropy loss
return -np.sum(y_true * np.log(y_pred))


if __name__ == "__main__":
import doctest

doctest.testmod()