Skip to content

charging_capacitor #10016

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 7, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions electronics/charging_capacitor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# source - The ARRL Handbook for Radio Communications
# https://en.wikipedia.org/wiki/RC_time_constant

"""
Description
-----------
When a capacitor is connected with a potential source (AC or DC). It starts to charge
at a general speed but when a resistor is connected in the circuit with in series to
a capacitor then the capacitor charges slowly means it will take more time than usual.
while the capacitor is being charged, the voltage is in exponential function with time.

'resistance(ohms) * capacitance(farads)' is called RC-timeconstant which may also be
represented as τ (tau). By using this RC-timeconstant we can find the voltage at any
time 't' from the initiation of charging a capacitor with the help of the exponential
function containing RC. Both at charging and discharging of a capacitor.
"""
from math import exp # value of exp = 2.718281828459…


def charging_capacitor(
source_voltage: float, # voltage in volts.
resistance: float, # resistance in ohms.
capacitance: float, # capacitance in farads.
time_sec: float, # time in seconds after charging initiation of capacitor.
) -> float:
"""
Find capacitor voltage at any nth second after initiating its charging.

Examples
--------
>>> charging_capacitor(source_voltage=.2,resistance=.9,capacitance=8.4,time_sec=.5)
0.013

>>> charging_capacitor(source_voltage=2.2,resistance=3.5,capacitance=2.4,time_sec=9)
1.446

>>> charging_capacitor(source_voltage=15,resistance=200,capacitance=20,time_sec=2)
0.007

>>> charging_capacitor(20, 2000, 30*pow(10,-5), 4)
19.975

>>> charging_capacitor(source_voltage=0,resistance=10.0,capacitance=.30,time_sec=3)
Traceback (most recent call last):
...
ValueError: Source voltage must be positive.

>>> charging_capacitor(source_voltage=20,resistance=-2000,capacitance=30,time_sec=4)
Traceback (most recent call last):
...
ValueError: Resistance must be positive.

>>> charging_capacitor(source_voltage=30,resistance=1500,capacitance=0,time_sec=4)
Traceback (most recent call last):
...
ValueError: Capacitance must be positive.
"""

if source_voltage <= 0:
raise ValueError("Source voltage must be positive.")
if resistance <= 0:
raise ValueError("Resistance must be positive.")
if capacitance <= 0:
raise ValueError("Capacitance must be positive.")
return round(source_voltage * (1 - exp(-time_sec / (resistance * capacitance))), 3)


if __name__ == "__main__":
import doctest

doctest.testmod()