We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 13987cc commit f7514a9Copy full SHA for f7514a9
computer_vision/Generative_Adversarial_Network_MNIST.py
@@ -1,3 +1,29 @@
1
+"""
2
+Generative Adversarial Network
3
+
4
+Objective : To train a GAN model to generate handwritten digits that can be transferred to other domains.
5
6
+Resources GAN Theory :
7
+ https://en.wikipedia.org/wiki/Generative_adversarial_network
8
+Resources PyTorch: https://pytorch.org/
9
10
+Download dataset from :
11
+PyTorch internal function
12
13
+1. Fetch the Dataset with PyTorch function.
14
+2. Create Dataloader.
15
+3. Create Discriminator and Generator.
16
+4. Set the hyperparameters and models.
17
+5. Set the loss functions.
18
+6. Create the training loop.
19
+7. Visualize the losses.
20
+8. Visualize the result from GAN.
21
22
23
24
25
26
27
%matplotlib inline
28
29
import numpy as np
0 commit comments