|
| 1 | +%matplotlib inline |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +from torchvision import datasets |
| 7 | +import torchvision.transforms as transforms |
| 8 | + |
| 9 | +# number of subprocesses to use for data loading |
| 10 | +num_workers = 0 |
| 11 | +# how many samples per batch to load |
| 12 | +batch_size = 64 |
| 13 | + |
| 14 | +# convert data to torch.FloatTensor |
| 15 | +transform = transforms.ToTensor() |
| 16 | + |
| 17 | +# get the training datasets |
| 18 | +train_data = datasets.MNIST(root='data', train=True, |
| 19 | + download=True, transform=transform) |
| 20 | + |
| 21 | +# prepare data loader |
| 22 | +train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, |
| 23 | + num_workers=num_workers) |
| 24 | + |
| 25 | +import torch.nn as nn |
| 26 | +import torch.nn.functional as F |
| 27 | + |
| 28 | +# Creating Generator and Discriminator for GAN |
| 29 | + |
| 30 | +class discriminator(nn.Module): |
| 31 | + def __init__(self,input_size,output_size,hidden_dim): |
| 32 | + super(discriminator,self).__init__() |
| 33 | + |
| 34 | + #defining the layers of the discriminator |
| 35 | + self.fc1 = nn.Linear(input_size,hidden_dim*4) |
| 36 | + self.fc2 = nn.Linear(hidden_dim*4,hidden_dim*2) |
| 37 | + self.fc3 = nn.Linear(hidden_dim*2,hidden_dim) |
| 38 | + #final fully connected layer |
| 39 | + self.fc4 = nn.Linear(hidden_dim,output_size) |
| 40 | + #dropout layer |
| 41 | + self.dropout = nn.Dropout(0.2) |
| 42 | + |
| 43 | + def forward(self,x): |
| 44 | + # pass x through all layers |
| 45 | + # apply leaky relu activation to all hidden layers |
| 46 | + x = x.view(-1,28*28) #flattening the image |
| 47 | + x = F.leaky_relu(self.fc1(x),0.2) |
| 48 | + x = self.dropout(x) |
| 49 | + x = F.leaky_relu(self.fc2(x),0.2) |
| 50 | + x = self.dropout(x) |
| 51 | + x = F.leaky_relu(self.fc3(x),0.2) |
| 52 | + x = self.dropout(x) |
| 53 | + x_out = self.fc4(x) |
| 54 | + |
| 55 | + return x_out |
| 56 | + |
| 57 | +class generator(nn.Module): |
| 58 | + |
| 59 | + def __init__(self, input_size, output_size,hidden_dim): |
| 60 | + super(generator, self).__init__() |
| 61 | + |
| 62 | + # define all layers |
| 63 | + self.fc1 = nn.Linear(input_size,hidden_dim) |
| 64 | + self.fc2 = nn.Linear(hidden_dim,hidden_dim*2) |
| 65 | + self.fc3 = nn.Linear(hidden_dim*2,hidden_dim*4) |
| 66 | + #final layer |
| 67 | + self.fc4 = nn.Linear(hidden_dim*4,output_size) |
| 68 | + #dropout layer |
| 69 | + self.dropout = nn.Dropout(0.2) |
| 70 | + |
| 71 | + |
| 72 | + def forward(self, x): |
| 73 | + # pass x through all layers |
| 74 | + # final layer should have tanh applied |
| 75 | + x = F.leaky_relu(self.fc1(x),0.2) |
| 76 | + x = self.dropout(x) |
| 77 | + x = F.leaky_relu(self.fc2(x),0.2) |
| 78 | + x = self.dropout(x) |
| 79 | + x = F.leaky_relu(self.fc3(x),0.2) |
| 80 | + x = self.dropout(x) |
| 81 | + x_out = F.tanh(self.fc4(x)) |
| 82 | + return x_out |
| 83 | + |
| 84 | +# Calculate losses |
| 85 | +def real_loss(D_out, smooth=False): |
| 86 | + # compare logits to real labels |
| 87 | + # smooth labels if smooth=True |
| 88 | + #puting it into cuda |
| 89 | + batch_size = D_out.size(0) |
| 90 | + if smooth: |
| 91 | + labels = torch.ones(batch_size).cuda()*0.9 |
| 92 | + else: |
| 93 | + labels = torch.ones(batch_size).cuda() |
| 94 | + criterion = nn.BCEWithLogitsLoss() |
| 95 | + loss = criterion(D_out.squeeze(),labels) |
| 96 | + return loss |
| 97 | + |
| 98 | +def fake_loss(D_out): |
| 99 | + # compare logits to fake labels |
| 100 | + batch_size = D_out.size(0) |
| 101 | + labels = torch.zeros(batch_size).cuda() |
| 102 | + criterion = nn.BCEWithLogitsLoss() |
| 103 | + loss = criterion(D_out.squeeze(),labels) |
| 104 | + return loss |
| 105 | + |
| 106 | +# Discriminator hyperparams |
| 107 | +# Size of input image to discriminator (28*28) |
| 108 | +input_size = 784 |
| 109 | +# Size of discriminator output (real or fake) |
| 110 | +d_output_size = 1 |
| 111 | +# Size of *last* hidden layer in the discriminator |
| 112 | +d_hidden_size = 32 |
| 113 | + |
| 114 | +# Generator hyperparams |
| 115 | + |
| 116 | +# Size of latent vector to give to generator |
| 117 | +z_size = 100 |
| 118 | +# Size of discriminator output (generated image) |
| 119 | +g_output_size = 784 |
| 120 | +# Size of *first* hidden layer in the generator |
| 121 | +g_hidden_size = 32 |
| 122 | + |
| 123 | +# instantiate discriminator and generator and put it in cuda mode |
| 124 | +D = discriminator(input_size, d_output_size,d_hidden_size).cuda() |
| 125 | +G = generator(z_size, g_output_size, g_hidden_size).cuda() |
| 126 | + |
| 127 | +import pickle as pkl |
| 128 | + |
| 129 | +# training hyperparams |
| 130 | +num_epochs = 40 |
| 131 | + |
| 132 | +# keep track of loss and generated, "fake" samples |
| 133 | +samples = [] |
| 134 | +losses = [] |
| 135 | + |
| 136 | +print_every = 400 |
| 137 | + |
| 138 | +# Get some fixed data for sampling. These are images that are held |
| 139 | +# constant throughout training, and allow us to inspect the model's performance |
| 140 | +sample_size=16 |
| 141 | +fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size)) |
| 142 | +fixed_z = torch.from_numpy(fixed_z).float().cuda() |
| 143 | + |
| 144 | +# train the network |
| 145 | +D.train() |
| 146 | +G.train() |
| 147 | +for epoch in range(num_epochs): |
| 148 | + |
| 149 | + for batch_i, (real_images, _) in enumerate(train_loader): |
| 150 | + |
| 151 | + batch_size = real_images.size(0) |
| 152 | + |
| 153 | + ## Important rescaling step ## |
| 154 | + real_images = (real_images*2 - 1).cuda() # rescale input images from [0,1) to [-1, 1) |
| 155 | + |
| 156 | + # ============================================ |
| 157 | + # TRAIN THE DISCRIMINATOR |
| 158 | + # ============================================ |
| 159 | + d_optimizer.zero_grad() |
| 160 | + # 1. Train with real images |
| 161 | + |
| 162 | + # Compute the discriminator losses on real images |
| 163 | + # use smoothed labels |
| 164 | + D_real = D(real_images) |
| 165 | + d_real_loss = real_loss(D_real,smooth=True) |
| 166 | + # 2. Train with fake images |
| 167 | + |
| 168 | + # Generate fake images |
| 169 | + z = np.random.uniform(-1, 1, size=(batch_size, z_size)) |
| 170 | + z = torch.from_numpy(z).float().cuda() |
| 171 | + fake_images = G(z) |
| 172 | + |
| 173 | + # Compute the discriminator losses on fake images |
| 174 | + D_fake = D(fake_images) |
| 175 | + d_fake_loss = fake_loss(D_fake) |
| 176 | + # add up real and fake losses and perform backprop |
| 177 | + d_loss = d_real_loss + d_fake_loss |
| 178 | + d_loss.backward() |
| 179 | + d_optimizer.step() |
| 180 | + |
| 181 | + |
| 182 | + # ========================================= |
| 183 | + # TRAIN THE GENERATOR |
| 184 | + # ========================================= |
| 185 | + g_optimizer.zero_grad() |
| 186 | + # 1. Train with fake images and flipped labels |
| 187 | + |
| 188 | + # Generate fake images |
| 189 | + z = np.random.uniform(-1, 1, size=(batch_size, z_size)) |
| 190 | + z = torch.from_numpy(z).float().cuda() |
| 191 | + fake_images = G(z) |
| 192 | + # Compute the discriminator losses on fake images |
| 193 | + # using flipped labels! |
| 194 | + D_fake = D(fake_images) |
| 195 | + # perform backprop |
| 196 | + g_loss = real_loss(D_fake) |
| 197 | + g_loss.backward() |
| 198 | + g_optimizer.step() |
| 199 | + |
| 200 | + |
| 201 | + # Print some loss stats |
| 202 | + if batch_i % print_every == 0: |
| 203 | + # print discriminator and generator loss |
| 204 | + print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.format( |
| 205 | + epoch+1, num_epochs, d_loss.item(), g_loss.item())) |
| 206 | + |
| 207 | + |
| 208 | + ## AFTER EACH EPOCH## |
| 209 | + # append discriminator loss and generator loss |
| 210 | + losses.append((d_loss.item(), g_loss.item())) |
| 211 | + |
| 212 | + # generate and save sample, fake images |
| 213 | + G.eval() # eval mode for generating samples |
| 214 | + samples_z = G(fixed_z) |
| 215 | + samples.append(samples_z) |
| 216 | + G.train() # back to train mode |
| 217 | + |
| 218 | + |
| 219 | +# Save training generator samples |
| 220 | +with open('train_samples.pkl', 'wb') as f: |
| 221 | + pkl.dump(samples, f) |
| 222 | + |
| 223 | +#ploting Discriminator and Generator loss |
| 224 | +fig, ax = plt.subplots() |
| 225 | +losses = np.array(losses) |
| 226 | +plt.plot(losses.T[0], label='Discriminator') |
| 227 | +plt.plot(losses.T[1], label='Generator') |
| 228 | +plt.title("Training Losses") |
| 229 | +plt.legend() |
| 230 | +plt.show() |
| 231 | + |
| 232 | + |
| 233 | +#Viewing the results of the GAN |
| 234 | +def view_samples(epoch, samples): |
| 235 | + |
| 236 | + fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True) |
| 237 | + fig.suptitle("Generated Digits") |
| 238 | + for ax, img in zip(axes.flatten(), samples[epoch]): |
| 239 | + img = img.detach().cpu().numpy() |
| 240 | + ax.xaxis.set_visible(False) |
| 241 | + ax.yaxis.set_visible(False) |
| 242 | + im = ax.imshow(img.reshape((28,28)), cmap='Greys_r') |
| 243 | + |
| 244 | +with open('train_samples.pkl', 'rb') as f: |
| 245 | + samples = pkl.load(f) |
| 246 | + |
| 247 | +view_samples(-1,samples) |
| 248 | +plt.show() |
| 249 | + |
0 commit comments