1
1
# LGBM Regressor Example using Bank Marketing Dataset
2
2
import numpy as np
3
+ from lightgbm import LGBMRegressor
3
4
from sklearn .datasets import fetch_openml
4
5
from sklearn .metrics import mean_absolute_error , mean_squared_error
5
6
from sklearn .model_selection import train_test_split
6
- from lightgbm import LGBMRegressor
7
7
8
8
9
9
def data_handling (data : dict ) -> tuple :
@@ -17,9 +17,8 @@ def data_handling(data: dict) -> tuple:
17
17
return (data ["data" ], data ["target" ])
18
18
19
19
20
- def lgbm_regressor (
21
- features : np .ndarray , target : np .ndarray , test_features : np .ndarray
22
- ) -> np .ndarray :
20
+ def lgbm_regressor (features : np .ndarray , target : np .ndarray ,
21
+ test_features : np .ndarray ) -> np .ndarray :
23
22
"""
24
23
>>> lgbm_regressor(np.array([[0.12, 0.02, 0.01, 0.25, 0.09]]),
25
24
... np.array([1]), np.array([[0.11, 0.03, 0.02, 0.28, 0.08]]))
@@ -40,7 +39,7 @@ def main() -> None:
40
39
Bank Marketing Dataset is used to demonstrate the algorithm.
41
40
"""
42
41
# Load Bank Marketing dataset
43
- bank_data = fetch_openml (name = " bank-marketing" , version = 1 , as_frame = False )
42
+ bank_data = fetch_openml (name = ' bank-marketing' , version = 1 , as_frame = False )
44
43
data , target = data_handling (bank_data )
45
44
x_train , x_test , y_train , y_test = train_test_split (
46
45
data , target , test_size = 0.25 , random_state = 1
0 commit comments