1
1
# LGBM Classifier Example using Bank Marketing Dataset
2
2
import numpy as np
3
+ from lightgbm import LGBMClassifier
3
4
from matplotlib import pyplot as plt
4
5
from sklearn .datasets import fetch_openml
5
6
from sklearn .metrics import ConfusionMatrixDisplay
6
7
from sklearn .model_selection import train_test_split
7
- from lightgbm import LGBMClassifier
8
8
9
9
10
10
def data_handling (data : dict ) -> tuple :
@@ -35,7 +35,7 @@ def main() -> None:
35
35
Bank Marketing Dataset is used to demonstrate the algorithm.
36
36
"""
37
37
# Load Bank Marketing dataset
38
- bank_data = fetch_openml (name = " bank-marketing" , version = 1 , as_frame = False )
38
+ bank_data = fetch_openml (name = ' bank-marketing' , version = 1 , as_frame = False )
39
39
data , target = data_handling (bank_data )
40
40
x_train , x_test , y_train , y_test = train_test_split (
41
41
data , target , test_size = 0.25 , random_state = 1
@@ -48,7 +48,7 @@ def main() -> None:
48
48
lgbm_classifier_model ,
49
49
x_test ,
50
50
y_test ,
51
- display_labels = ["No" , " Yes" ],
51
+ display_labels = ['No' , ' Yes' ],
52
52
cmap = "Blues" ,
53
53
normalize = "true" ,
54
54
)
0 commit comments