We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent f0ceb04 commit 7298a54Copy full SHA for 7298a54
machine_learning/lgbm_classifier.py
@@ -35,7 +35,7 @@ def main() -> None:
35
Bank Marketing Dataset is used to demonstrate the algorithm.
36
"""
37
# Load Bank Marketing dataset
38
- bank_data = fetch_openml(name='bank-marketing', version=1, as_frame=False)
+ bank_data = fetch_openml(name="bank-marketing", version=1, as_frame=False)
39
data, target = data_handling(bank_data)
40
x_train, x_test, y_train, y_test = train_test_split(
41
data, target, test_size=0.25, random_state=1
@@ -48,7 +48,7 @@ def main() -> None:
48
lgbm_classifier_model,
49
x_test,
50
y_test,
51
- display_labels=['No', 'Yes'],
+ display_labels=["No", "Yes"],
52
cmap="Blues",
53
normalize="true",
54
)
machine_learning/lgbm_regressor.py
@@ -17,8 +17,9 @@ def data_handling(data: dict) -> tuple:
17
return (data["data"], data["target"])
18
19
20
-def lgbm_regressor(features: np.ndarray, target: np.ndarray,
21
- test_features: np.ndarray) -> np.ndarray:
+def lgbm_regressor(
+ features: np.ndarray, target: np.ndarray, test_features: np.ndarray
22
+) -> np.ndarray:
23
24
>>> lgbm_regressor(np.array([[0.12, 0.02, 0.01, 0.25, 0.09]]),
25
... np.array([1]), np.array([[0.11, 0.03, 0.02, 0.28, 0.08]]))
@@ -39,7 +40,7 @@ def main() -> None:
42
43
44
45
46
0 commit comments