|
| 1 | +# Min head data structure |
| 2 | +# with decrease key functionality - in O(log(n)) time |
| 3 | + |
| 4 | + |
| 5 | +class Node: |
| 6 | + def __init__(self, name, val): |
| 7 | + self.name = name |
| 8 | + self.val = val |
| 9 | + |
| 10 | + def __str__(self): |
| 11 | + return f"{self.__class__.__name__}({self.name}, {self.val})" |
| 12 | + |
| 13 | + def __lt__(self, other): |
| 14 | + return self.val < other.val |
| 15 | + |
| 16 | + |
| 17 | +class MinHeap: |
| 18 | + """ |
| 19 | + >>> r = Node("R", -1) |
| 20 | + >>> b = Node("B", 6) |
| 21 | + >>> a = Node("A", 3) |
| 22 | + >>> x = Node("X", 1) |
| 23 | + >>> e = Node("E", 4) |
| 24 | + >>> print(b) |
| 25 | + Node(B, 6) |
| 26 | + >>> myMinHeap = MinHeap([r, b, a, x, e]) |
| 27 | + >>> myMinHeap.decrease_key(b, -17) |
| 28 | + >>> print(b) |
| 29 | + Node(B, -17) |
| 30 | + >>> print(myMinHeap["B"]) |
| 31 | + -17 |
| 32 | + """ |
| 33 | + |
| 34 | + def __init__(self, array): |
| 35 | + self.idx_of_element = {} |
| 36 | + self.heap_dict = {} |
| 37 | + self.heap = self.build_heap(array) |
| 38 | + |
| 39 | + def __getitem__(self, key): |
| 40 | + return self.get_value(key) |
| 41 | + |
| 42 | + def get_parent_idx(self, idx): |
| 43 | + return (idx - 1) // 2 |
| 44 | + |
| 45 | + def get_left_child_idx(self, idx): |
| 46 | + return idx * 2 + 1 |
| 47 | + |
| 48 | + def get_right_child_idx(self, idx): |
| 49 | + return idx * 2 + 2 |
| 50 | + |
| 51 | + def get_value(self, key): |
| 52 | + return self.heap_dict[key] |
| 53 | + |
| 54 | + def build_heap(self, array): |
| 55 | + lastIdx = len(array) - 1 |
| 56 | + startFrom = self.get_parent_idx(lastIdx) |
| 57 | + |
| 58 | + for idx, i in enumerate(array): |
| 59 | + self.idx_of_element[i] = idx |
| 60 | + self.heap_dict[i.name] = i.val |
| 61 | + |
| 62 | + for i in range(startFrom, -1, -1): |
| 63 | + self.sift_down(i, array) |
| 64 | + return array |
| 65 | + |
| 66 | + # this is min-heapify method |
| 67 | + def sift_down(self, idx, array): |
| 68 | + while True: |
| 69 | + l = self.get_left_child_idx(idx) |
| 70 | + r = self.get_right_child_idx(idx) |
| 71 | + |
| 72 | + smallest = idx |
| 73 | + if l < len(array) and array[l] < array[idx]: |
| 74 | + smallest = l |
| 75 | + if r < len(array) and array[r] < array[smallest]: |
| 76 | + smallest = r |
| 77 | + |
| 78 | + if smallest != idx: |
| 79 | + array[idx], array[smallest] = array[smallest], array[idx] |
| 80 | + self.idx_of_element[array[idx]], self.idx_of_element[ |
| 81 | + array[smallest] |
| 82 | + ] = ( |
| 83 | + self.idx_of_element[array[smallest]], |
| 84 | + self.idx_of_element[array[idx]], |
| 85 | + ) |
| 86 | + idx = smallest |
| 87 | + else: |
| 88 | + break |
| 89 | + |
| 90 | + def sift_up(self, idx): |
| 91 | + p = self.get_parent_idx(idx) |
| 92 | + while p >= 0 and self.heap[p] > self.heap[idx]: |
| 93 | + self.heap[p], self.heap[idx] = self.heap[idx], self.heap[p] |
| 94 | + self.idx_of_element[self.heap[p]], self.idx_of_element[self.heap[idx]] = ( |
| 95 | + self.idx_of_element[self.heap[idx]], |
| 96 | + self.idx_of_element[self.heap[p]], |
| 97 | + ) |
| 98 | + idx = p |
| 99 | + p = self.get_parent_idx(idx) |
| 100 | + |
| 101 | + def peek(self): |
| 102 | + return self.heap[0] |
| 103 | + |
| 104 | + def remove(self): |
| 105 | + self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0] |
| 106 | + self.idx_of_element[self.heap[0]], self.idx_of_element[self.heap[-1]] = ( |
| 107 | + self.idx_of_element[self.heap[-1]], |
| 108 | + self.idx_of_element[self.heap[0]], |
| 109 | + ) |
| 110 | + |
| 111 | + x = self.heap.pop() |
| 112 | + del self.idx_of_element[x] |
| 113 | + self.sift_down(0, self.heap) |
| 114 | + return x |
| 115 | + |
| 116 | + def insert(self, node): |
| 117 | + self.heap.append(node) |
| 118 | + self.idx_of_element[node] = len(self.heap) - 1 |
| 119 | + self.heap_dict[node.name] = node.val |
| 120 | + self.sift_up(len(self.heap) - 1) |
| 121 | + |
| 122 | + def is_empty(self): |
| 123 | + return True if len(self.heap) == 0 else False |
| 124 | + |
| 125 | + def decrease_key(self, node, newValue): |
| 126 | + assert ( |
| 127 | + self.heap[self.idx_of_element[node]].val > newValue |
| 128 | + ), "newValue must be less that current value" |
| 129 | + node.val = newValue |
| 130 | + self.heap_dict[node.name] = newValue |
| 131 | + self.sift_up(self.idx_of_element[node]) |
| 132 | + |
| 133 | + |
| 134 | +## USAGE |
| 135 | + |
| 136 | +r = Node("R", -1) |
| 137 | +b = Node("B", 6) |
| 138 | +a = Node("A", 3) |
| 139 | +x = Node("X", 1) |
| 140 | +e = Node("E", 4) |
| 141 | + |
| 142 | +# Use one of these two ways to generate Min-Heap |
| 143 | + |
| 144 | +# Generating Min-Heap from array |
| 145 | +myMinHeap = MinHeap([r, b, a, x, e]) |
| 146 | + |
| 147 | +# Generating Min-Heap by Insert method |
| 148 | +# myMinHeap.insert(a) |
| 149 | +# myMinHeap.insert(b) |
| 150 | +# myMinHeap.insert(x) |
| 151 | +# myMinHeap.insert(r) |
| 152 | +# myMinHeap.insert(e) |
| 153 | + |
| 154 | +# Before |
| 155 | +print("Min Heap - before decrease key") |
| 156 | +for i in myMinHeap.heap: |
| 157 | + print(i) |
| 158 | + |
| 159 | +print("Min Heap - After decrease key of node [B -> -17]") |
| 160 | +myMinHeap.decrease_key(b, -17) |
| 161 | + |
| 162 | +# After |
| 163 | +for i in myMinHeap.heap: |
| 164 | + print(i) |
| 165 | + |
| 166 | +if __name__ == "__main__": |
| 167 | + import doctest |
| 168 | + |
| 169 | + doctest.testmod() |
0 commit comments