|
| 1 | +"""Matrix Exponentiation""" |
| 2 | + |
| 3 | +import timeit |
| 4 | + |
| 5 | +""" |
| 6 | +Matrix Exponentiation is a technique to solve linear recurrences in logarithmic time. |
| 7 | +You read more about it here: |
| 8 | +http://zobayer.blogspot.com/2010/11/matrix-exponentiation.html |
| 9 | +https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/ |
| 10 | +""" |
| 11 | + |
| 12 | + |
| 13 | +class Matrix(object): |
| 14 | + def __init__(self, arg): |
| 15 | + if isinstance(arg, list): # Initialzes a matrix identical to the one provided. |
| 16 | + self.t = arg |
| 17 | + self.n = len(arg) |
| 18 | + else: # Initializes a square matrix of the given size and set the values to zero. |
| 19 | + self.n = arg |
| 20 | + self.t = [[0 for _ in range(self.n)] for _ in range(self.n)] |
| 21 | + |
| 22 | + def __mul__(self, b): |
| 23 | + matrix = Matrix(self.n) |
| 24 | + for i in range(self.n): |
| 25 | + for j in range(self.n): |
| 26 | + for k in range(self.n): |
| 27 | + matrix.t[i][j] += self.t[i][k] * b.t[k][j] |
| 28 | + return matrix |
| 29 | + |
| 30 | + |
| 31 | +def modular_exponentiation(a, b): |
| 32 | + matrix = Matrix([[1, 0], [0, 1]]) |
| 33 | + while b > 0: |
| 34 | + if b & 1: |
| 35 | + matrix *= a |
| 36 | + a *= a |
| 37 | + b >>= 1 |
| 38 | + return matrix |
| 39 | + |
| 40 | + |
| 41 | +def fibonacci_with_matrix_exponentiation(n, f1, f2): |
| 42 | + # Trivial Cases |
| 43 | + if n == 1: |
| 44 | + return f1 |
| 45 | + elif n == 2: |
| 46 | + return f2 |
| 47 | + matrix = Matrix([[1, 1], [1, 0]]) |
| 48 | + matrix = modular_exponentiation(matrix, n - 2) |
| 49 | + return f2 * matrix.t[0][0] + f1 * matrix.t[0][1] |
| 50 | + |
| 51 | + |
| 52 | +def simple_fibonacci(n, f1, f2): |
| 53 | + # Trival Cases |
| 54 | + if n == 1: |
| 55 | + return f1 |
| 56 | + elif n == 2: |
| 57 | + return f2 |
| 58 | + |
| 59 | + fn_1 = f1 |
| 60 | + fn_2 = f2 |
| 61 | + n -= 2 |
| 62 | + |
| 63 | + while n > 0: |
| 64 | + fn_1, fn_2 = fn_1 + fn_2, fn_1 |
| 65 | + n -= 1 |
| 66 | + |
| 67 | + return fn |
| 68 | + |
| 69 | + |
| 70 | +def matrix_exponentiation_time(): |
| 71 | + setup = """ |
| 72 | +from random import randint |
| 73 | +from __main__ import fibonacci_with_matrix_exponentiation |
| 74 | +""" |
| 75 | + code = "fibonacci_with_matrix_exponentiation(randint(1,70000), 1, 1)" |
| 76 | + exec_time = timeit.timeit(setup=setup, stmt=code, number=100) |
| 77 | + print("With matrix exponentiation the average execution time is ", exec_time / 100) |
| 78 | + return exec_time |
| 79 | + |
| 80 | + |
| 81 | +def simple_fibonacci_time(): |
| 82 | + setup = """ |
| 83 | +from random import randint |
| 84 | +from __main__ import simple_fibonacci |
| 85 | +""" |
| 86 | + code = "simple_fibonacci(randint(1,70000), 1, 1)" |
| 87 | + exec_time = timeit.timeit(setup=setup, stmt=code, number=100) |
| 88 | + print("Without matrix exponentiation the average execution time is ", |
| 89 | + exec_time / 100) |
| 90 | + return exec_time |
| 91 | + |
| 92 | + |
| 93 | +def main(): |
| 94 | + matrix_exponentiation_time() |
| 95 | + simple_fibonacci_time() |
| 96 | + |
| 97 | + |
| 98 | +if __name__ == "__main__": |
| 99 | + main() |
0 commit comments