|
1 | 1 | """
|
2 |
| -Ridge Regression is a type of linear regression that includes an L2 regularization term |
3 |
| -to prevent overfitting and improve generalization. It is commonly used when multicollinearity |
4 |
| -occurs, as it helps to reduce the model's complexity by penalizing large coefficients, |
5 |
| -resulting in better prediction performance on unseen data. |
| 2 | +Ridge Regression with L2 Regularization using Gradient Descent. |
6 | 3 |
|
7 |
| -This implementation uses gradient descent to optimize the weights, with an L2 penalty to |
8 |
| -regularize the feature vector. The code reads a dataset with Average Damage per Round (ADR) |
9 |
| -and player ratings, processes the data, and applies ridge regression to predict ADR |
10 |
| -based on player ratings. |
| 4 | +Ridge Regression is a type of linear regression that includes an L2 regularization |
| 5 | +term to prevent overfitting and improve generalization. It is commonly used when |
| 6 | +multicollinearity is present in the data. |
11 | 7 |
|
12 |
| -WIKI: https://en.wikipedia.org/wiki/Ridge_regression |
| 8 | +More on Ridge Regression: https://en.wikipedia.org/wiki/Tikhonov_regularization |
13 | 9 | """
|
14 | 10 |
|
| 11 | +from typing import Tuple |
15 | 12 | import numpy as np
|
16 | 13 | import pandas as pd
|
17 |
| -from sklearn.metrics import mean_absolute_error |
18 | 14 |
|
19 |
| -class RidgeRegression: |
| 15 | +def load_data(file_path: str) -> Tuple[np.ndarray, np.ndarray]: |
20 | 16 | """
|
21 |
| - A Ridge Regression model with L2 regularization. |
22 |
| -
|
23 |
| - Attributes: |
24 |
| - learning_rate (float): Step size for gradient descent optimization. |
25 |
| - regularization_param (float): Regularization strength (lambda), penalizing large weights. |
26 |
| - num_iterations (int): Number of iterations for gradient descent. |
27 |
| - weights (np.ndarray): Feature weights. |
28 |
| - bias (float): Bias term for the regression model. |
29 |
| - """ |
30 |
| - def __init__(self, learning_rate=0.01, regularization_param=0.1, num_iterations=1000): |
31 |
| - self.learning_rate = learning_rate |
32 |
| - self.regularization_param = regularization_param |
33 |
| - self.num_iterations = num_iterations |
34 |
| - self.weights = None |
35 |
| - self.bias = 0 |
36 |
| - |
37 |
| - def fit(self, X, y): |
38 |
| - """ |
39 |
| - Fits the ridge regression model to the data using gradient descent. |
40 |
| -
|
41 |
| - Args: |
42 |
| - X (np.ndarray): Input features. |
43 |
| - y (np.ndarray): Target variable. |
44 |
| -
|
45 |
| - >>> model = RidgeRegression(learning_rate=0.01, regularization_param=0.1, num_iterations=1000) |
46 |
| - >>> X = np.array([[1], [2], [3], [4]]) |
47 |
| - >>> y = np.array([2, 3, 4, 5]) |
48 |
| - >>> model.fit(X, y) |
49 |
| - >>> round(model.weights[0], 2) |
50 |
| - 0.86 |
51 |
| - """ |
52 |
| - num_samples, num_features = X.shape |
53 |
| - self.weights = np.zeros(num_features) |
54 |
| - |
55 |
| - for i in range(self.num_iterations): |
56 |
| - y_pred = self.predict(X) |
57 |
| - error = y_pred - y |
58 |
| - |
59 |
| - # Calculate gradients with L2 regularization |
60 |
| - dw = (1 / num_samples) * (X.T.dot(error) + self.regularization_param * self.weights) |
61 |
| - db = (1 / num_samples) * np.sum(error) |
62 |
| - |
63 |
| - # Update weights and bias |
64 |
| - self.weights -= self.learning_rate * dw |
65 |
| - self.bias -= self.learning_rate * db |
66 |
| - |
67 |
| - def predict(self, X): |
68 |
| - """ |
69 |
| - Predicts target values for the input data X using the trained model. |
70 |
| -
|
71 |
| - Args: |
72 |
| - X (np.ndarray): Input features for which to predict target values. |
73 |
| -
|
74 |
| - Returns: |
75 |
| - np.ndarray: Predicted target values. |
76 |
| -
|
77 |
| - >>> model = RidgeRegression() |
78 |
| - >>> model.weights, model.bias = np.array([0.5]), 1 |
79 |
| - >>> X = np.array([[1], [2], [3]]) |
80 |
| - >>> model.predict(X) |
81 |
| - array([1.5, 2. , 2.5]) |
82 |
| - """ |
83 |
| - return X.dot(self.weights) + self.bias |
84 |
| - |
85 |
| - def calculate_error(self, X, y): |
86 |
| - """ |
87 |
| - Calculates the Mean Squared Error (MSE) between the predicted and actual target values. |
88 |
| -
|
89 |
| - Args: |
90 |
| - X (np.ndarray): Input features. |
91 |
| - y (np.ndarray): Actual target values. |
92 |
| -
|
93 |
| - Returns: |
94 |
| - float: Mean Squared Error (MSE). |
95 |
| -
|
96 |
| - >>> model = RidgeRegression() |
97 |
| - >>> model.weights, model.bias = np.array([0.5]), 1 |
98 |
| - >>> X = np.array([[1], [2], [3]]) |
99 |
| - >>> y = np.array([1.5, 2.5, 3.5]) |
100 |
| - >>> round(model.calculate_error(X, y), 2) |
101 |
| - 0.0 |
102 |
| - """ |
103 |
| - y_pred = self.predict(X) |
104 |
| - return np.mean((y - y_pred) ** 2) # Mean squared error |
105 |
| - |
106 |
| - def calculate_mae(self, X, y): |
107 |
| - """ |
108 |
| - Calculates the Mean Absolute Error (MAE) between the predicted and actual target values. |
109 |
| -
|
110 |
| - Args: |
111 |
| - X (np.ndarray): Input features. |
112 |
| - y (np.ndarray): Actual target values. |
113 |
| -
|
114 |
| - Returns: |
115 |
| - float: Mean Absolute Error (MAE). |
116 |
| -
|
117 |
| - >>> model = RidgeRegression() |
118 |
| - >>> model.weights, model.bias = np.array([0.5]), 1 |
119 |
| - >>> X = np.array([[1], [2], [3]]) |
120 |
| - >>> y = np.array([1.5, 2.5, 3.5]) |
121 |
| - >>> round(model.calculate_mae(X, y), 2) |
122 |
| - 0.0 |
123 |
| - """ |
124 |
| - y_pred = self.predict(X) |
125 |
| - return mean_absolute_error(y, y_pred) |
126 |
| - |
127 |
| -# Load data |
128 |
| -def load_data(filepath): |
129 |
| - """ |
130 |
| - Loads data from a CSV file, extracting 'PlayerRating' as the feature |
131 |
| - and 'ADR' as the target variable. |
| 17 | + Load data from a CSV file and return features and target arrays. |
132 | 18 |
|
133 | 19 | Args:
|
134 |
| - filepath (str): Path to the CSV file containing data. |
| 20 | + file_path: Path to the CSV file. |
135 | 21 |
|
136 | 22 | Returns:
|
137 |
| - tuple: (X, y) where X is the feature array and y is the target array. |
| 23 | + A tuple containing features (X) and target (y) as numpy arrays. |
138 | 24 |
|
139 |
| - >>> data = load_data('player_data.csv') |
140 |
| - >>> isinstance(data[0], np.ndarray) and isinstance(data[1], np.ndarray) |
| 25 | + Example: |
| 26 | + >>> data = pd.DataFrame({'ADR': [200, 220], 'Rating': [1.2, 1.4]}) |
| 27 | + >>> data.to_csv('sample.csv', index=False) |
| 28 | + >>> X, y = load_data('sample.csv') |
| 29 | + >>> X.shape == (2, 1) and y.shape == (2,) |
141 | 30 | True
|
142 | 31 | """
|
143 |
| - data = pd.read_csv(filepath) |
144 |
| - X = data[['PlayerRating']].values # Feature |
145 |
| - y = data['ADR'].values # Target |
| 32 | + data = pd.read_csv(file_path) |
| 33 | + X = data[['Rating']].to_numpy() # Use .to_numpy() instead of .values (PD011) |
| 34 | + y = data['ADR'].to_numpy() |
146 | 35 | return X, y
|
147 | 36 |
|
148 |
| -# Example usage |
149 |
| -if __name__ == "__main__": |
| 37 | +def ridge_gradient_descent( |
| 38 | + X: np.ndarray, y: np.ndarray, reg_lambda: float, learning_rate: float, |
| 39 | + num_iters: int = 1000 |
| 40 | +) -> np.ndarray: |
150 | 41 | """
|
151 |
| - Ridge Regression model for predicting Average Damage per Round (ADR) based on player ratings. |
| 42 | + Perform Ridge Regression using gradient descent. |
152 | 43 |
|
153 |
| - The model is initialized with a learning rate, regularization parameter, and a specified |
154 |
| - number of gradient descent iterations. After training, it outputs the optimized weights |
155 |
| - and bias, and displays the Mean Squared Error (MSE) and Mean Absolute Error (MAE). |
| 44 | + Args: |
| 45 | + X: Feature matrix. |
| 46 | + y: Target vector. |
| 47 | + reg_lambda: Regularization parameter (lambda). |
| 48 | + learning_rate: Learning rate for gradient descent. |
| 49 | + num_iters: Number of iterations for gradient descent. |
| 50 | +
|
| 51 | + Returns: |
| 52 | + Optimized weights (coefficients) for predicting ADR from Rating. |
156 | 53 |
|
157 |
| - >>> model = RidgeRegression(learning_rate=0.01, regularization_param=0.5, num_iterations=1000) |
158 |
| - >>> X, y = load_data('player_data.csv') |
159 |
| - >>> model.fit(X, y) |
160 |
| - >>> isinstance(model.weights, np.ndarray) and isinstance(model.bias, float) |
| 54 | + Example: |
| 55 | + >>> X = np.array([[1.2], [1.4]]) |
| 56 | + >>> y = np.array([200, 220]) |
| 57 | + >>> ridge_gradient_descent(X, y, reg_lambda=0.1, learning_rate=0.01).shape == (1,) |
161 | 58 | True
|
162 | 59 | """
|
163 |
| - import doctest |
| 60 | + weights = np.zeros(X.shape[1]) |
| 61 | + m = len(y) |
| 62 | + |
| 63 | + for _ in range(num_iters): |
| 64 | + predictions = X @ weights |
| 65 | + error = predictions - y |
| 66 | + gradient = (X.T @ error + reg_lambda * weights) / m |
| 67 | + weights -= learning_rate * gradient |
| 68 | + |
| 69 | + return weights |
| 70 | + |
| 71 | +def mean_absolute_error(y_true: np.ndarray, y_pred: np.ndarray) -> float: |
| 72 | + """ |
| 73 | + Calculate the Mean Absolute Error (MAE) between true and predicted values. |
164 | 74 |
|
| 75 | + Args: |
| 76 | + y_true: Actual values. |
| 77 | + y_pred: Predicted values. |
| 78 | +
|
| 79 | + Returns: |
| 80 | + Mean absolute error. |
| 81 | +
|
| 82 | + Example: |
| 83 | + >>> mean_absolute_error(np.array([200, 220]), np.array([205, 215])) |
| 84 | + 5.0 |
| 85 | + """ |
| 86 | + return np.mean(np.abs(y_true - y_pred)) |
| 87 | + |
| 88 | +if __name__ == "__main__": |
| 89 | + import doctest |
165 | 90 | doctest.testmod()
|
166 | 91 |
|
167 |
| - # Load and preprocess the data |
168 |
| - filepath = 'player_data.csv' # Replace with actual file path |
169 |
| - X, y = load_data(filepath) |
170 |
| - |
171 |
| - # Initialize and train the model |
172 |
| - model = RidgeRegression(learning_rate=0.01, regularization_param=0.5, num_iterations=1000) |
173 |
| - model.fit(X, y) |
174 |
| - |
175 |
| - # Calculate and display errors |
176 |
| - mse = model.calculate_error(X, y) |
177 |
| - mae = model.calculate_mae(X, y) |
178 |
| - |
179 |
| - print(f"Optimized weights: {model.weights}") |
180 |
| - print(f"Bias: {model.bias}") |
181 |
| - print(f"Mean Squared Error: {mse}") |
182 |
| - print(f"Mean Absolute Error: {mae}") |
| 92 | + # Load the data |
| 93 | + X, y = load_data("sample.csv") |
| 94 | + |
| 95 | + # Fit the Ridge Regression model |
| 96 | + optimized_weights = ridge_gradient_descent(X, y, reg_lambda=0.1, learning_rate=0.01) |
| 97 | + |
| 98 | + # Make predictions |
| 99 | + y_pred = X @ optimized_weights |
| 100 | + |
| 101 | + # Calculate Mean Absolute Error |
| 102 | + mae = mean_absolute_error(y, y_pred) |
| 103 | + print("Optimized Weights:", optimized_weights) |
| 104 | + print("Mean Absolute Error:", mae) |
0 commit comments