|
| 1 | +""" |
| 2 | +Ridge Regression is a type of linear regression that includes an L2 regularization term |
| 3 | +to prevent overfitting and improve generalization. It is commonly used when multicollinearity |
| 4 | +occurs, as it helps to reduce the model's complexity by penalizing large coefficients, |
| 5 | +resulting in better prediction performance on unseen data. |
| 6 | +
|
| 7 | +This implementation uses gradient descent to optimize the weights, with an L2 penalty to |
| 8 | +regularize the feature vector. The code reads a dataset with Average Damage per Round (ADR) |
| 9 | +and player ratings, processes the data, and applies ridge regression to predict ADR |
| 10 | +based on player ratings. |
| 11 | +
|
| 12 | +WIKI: https://en.wikipedia.org/wiki/Ridge_regression |
| 13 | +""" |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +import pandas as pd |
| 17 | +from sklearn.metrics import mean_absolute_error |
| 18 | + |
| 19 | +class RidgeRegression: |
| 20 | + """ |
| 21 | + A Ridge Regression model with L2 regularization. |
| 22 | +
|
| 23 | + Attributes: |
| 24 | + learning_rate (float): Step size for gradient descent optimization. |
| 25 | + regularization_param (float): Regularization strength (lambda), penalizing large weights. |
| 26 | + num_iterations (int): Number of iterations for gradient descent. |
| 27 | + weights (np.ndarray): Feature weights. |
| 28 | + bias (float): Bias term for the regression model. |
| 29 | + """ |
| 30 | + def __init__(self, learning_rate=0.01, regularization_param=0.1, num_iterations=1000): |
| 31 | + self.learning_rate = learning_rate |
| 32 | + self.regularization_param = regularization_param |
| 33 | + self.num_iterations = num_iterations |
| 34 | + self.weights = None |
| 35 | + self.bias = 0 |
| 36 | + |
| 37 | + def fit(self, X, y): |
| 38 | + """ |
| 39 | + Fits the ridge regression model to the data using gradient descent. |
| 40 | +
|
| 41 | + Args: |
| 42 | + X (np.ndarray): Input features. |
| 43 | + y (np.ndarray): Target variable. |
| 44 | +
|
| 45 | + >>> model = RidgeRegression(learning_rate=0.01, regularization_param=0.1, num_iterations=1000) |
| 46 | + >>> X = np.array([[1], [2], [3], [4]]) |
| 47 | + >>> y = np.array([2, 3, 4, 5]) |
| 48 | + >>> model.fit(X, y) |
| 49 | + >>> round(model.weights[0], 2) |
| 50 | + 0.86 |
| 51 | + """ |
| 52 | + num_samples, num_features = X.shape |
| 53 | + self.weights = np.zeros(num_features) |
| 54 | + |
| 55 | + for i in range(self.num_iterations): |
| 56 | + y_pred = self.predict(X) |
| 57 | + error = y_pred - y |
| 58 | + |
| 59 | + # Calculate gradients with L2 regularization |
| 60 | + dw = (1 / num_samples) * (X.T.dot(error) + self.regularization_param * self.weights) |
| 61 | + db = (1 / num_samples) * np.sum(error) |
| 62 | + |
| 63 | + # Update weights and bias |
| 64 | + self.weights -= self.learning_rate * dw |
| 65 | + self.bias -= self.learning_rate * db |
| 66 | + |
| 67 | + def predict(self, X): |
| 68 | + """ |
| 69 | + Predicts target values for the input data X using the trained model. |
| 70 | +
|
| 71 | + Args: |
| 72 | + X (np.ndarray): Input features for which to predict target values. |
| 73 | +
|
| 74 | + Returns: |
| 75 | + np.ndarray: Predicted target values. |
| 76 | +
|
| 77 | + >>> model = RidgeRegression() |
| 78 | + >>> model.weights, model.bias = np.array([0.5]), 1 |
| 79 | + >>> X = np.array([[1], [2], [3]]) |
| 80 | + >>> model.predict(X) |
| 81 | + array([1.5, 2. , 2.5]) |
| 82 | + """ |
| 83 | + return X.dot(self.weights) + self.bias |
| 84 | + |
| 85 | + def calculate_error(self, X, y): |
| 86 | + """ |
| 87 | + Calculates the Mean Squared Error (MSE) between the predicted and actual target values. |
| 88 | +
|
| 89 | + Args: |
| 90 | + X (np.ndarray): Input features. |
| 91 | + y (np.ndarray): Actual target values. |
| 92 | +
|
| 93 | + Returns: |
| 94 | + float: Mean Squared Error (MSE). |
| 95 | +
|
| 96 | + >>> model = RidgeRegression() |
| 97 | + >>> model.weights, model.bias = np.array([0.5]), 1 |
| 98 | + >>> X = np.array([[1], [2], [3]]) |
| 99 | + >>> y = np.array([1.5, 2.5, 3.5]) |
| 100 | + >>> round(model.calculate_error(X, y), 2) |
| 101 | + 0.0 |
| 102 | + """ |
| 103 | + y_pred = self.predict(X) |
| 104 | + return np.mean((y - y_pred) ** 2) # Mean squared error |
| 105 | + |
| 106 | + def calculate_mae(self, X, y): |
| 107 | + """ |
| 108 | + Calculates the Mean Absolute Error (MAE) between the predicted and actual target values. |
| 109 | +
|
| 110 | + Args: |
| 111 | + X (np.ndarray): Input features. |
| 112 | + y (np.ndarray): Actual target values. |
| 113 | +
|
| 114 | + Returns: |
| 115 | + float: Mean Absolute Error (MAE). |
| 116 | +
|
| 117 | + >>> model = RidgeRegression() |
| 118 | + >>> model.weights, model.bias = np.array([0.5]), 1 |
| 119 | + >>> X = np.array([[1], [2], [3]]) |
| 120 | + >>> y = np.array([1.5, 2.5, 3.5]) |
| 121 | + >>> round(model.calculate_mae(X, y), 2) |
| 122 | + 0.0 |
| 123 | + """ |
| 124 | + y_pred = self.predict(X) |
| 125 | + return mean_absolute_error(y, y_pred) |
| 126 | + |
| 127 | +# Load data |
| 128 | +def load_data(filepath): |
| 129 | + """ |
| 130 | + Loads data from a CSV file, extracting 'PlayerRating' as the feature |
| 131 | + and 'ADR' as the target variable. |
| 132 | +
|
| 133 | + Args: |
| 134 | + filepath (str): Path to the CSV file containing data. |
| 135 | +
|
| 136 | + Returns: |
| 137 | + tuple: (X, y) where X is the feature array and y is the target array. |
| 138 | +
|
| 139 | + >>> data = load_data('player_data.csv') |
| 140 | + >>> isinstance(data[0], np.ndarray) and isinstance(data[1], np.ndarray) |
| 141 | + True |
| 142 | + """ |
| 143 | + data = pd.read_csv(filepath) |
| 144 | + X = data[['PlayerRating']].values # Feature |
| 145 | + y = data['ADR'].values # Target |
| 146 | + return X, y |
| 147 | + |
| 148 | +# Example usage |
| 149 | +if __name__ == "__main__": |
| 150 | + """ |
| 151 | + Ridge Regression model for predicting Average Damage per Round (ADR) based on player ratings. |
| 152 | +
|
| 153 | + The model is initialized with a learning rate, regularization parameter, and a specified |
| 154 | + number of gradient descent iterations. After training, it outputs the optimized weights |
| 155 | + and bias, and displays the Mean Squared Error (MSE) and Mean Absolute Error (MAE). |
| 156 | +
|
| 157 | + >>> model = RidgeRegression(learning_rate=0.01, regularization_param=0.5, num_iterations=1000) |
| 158 | + >>> X, y = load_data('player_data.csv') |
| 159 | + >>> model.fit(X, y) |
| 160 | + >>> isinstance(model.weights, np.ndarray) and isinstance(model.bias, float) |
| 161 | + True |
| 162 | + """ |
| 163 | + import doctest |
| 164 | + |
| 165 | + doctest.testmod() |
| 166 | + |
| 167 | + # Load and preprocess the data |
| 168 | + filepath = 'player_data.csv' # Replace with actual file path |
| 169 | + X, y = load_data(filepath) |
| 170 | + |
| 171 | + # Initialize and train the model |
| 172 | + model = RidgeRegression(learning_rate=0.01, regularization_param=0.5, num_iterations=1000) |
| 173 | + model.fit(X, y) |
| 174 | + |
| 175 | + # Calculate and display errors |
| 176 | + mse = model.calculate_error(X, y) |
| 177 | + mae = model.calculate_mae(X, y) |
| 178 | + |
| 179 | + print(f"Optimized weights: {model.weights}") |
| 180 | + print(f"Bias: {model.bias}") |
| 181 | + print(f"Mean Squared Error: {mse}") |
| 182 | + print(f"Mean Absolute Error: {mae}") |
0 commit comments