|
1 |
| -# fibonacci.py |
2 |
| -""" |
3 |
| -1. Calculates the iterative fibonacci sequence |
4 |
| -
|
5 |
| -2. Calculates the fibonacci sequence with a formula |
6 |
| - an = [ Phin - (phi)n ]/Sqrt[5] |
7 |
| - reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts. |
8 |
| - <http://www.math.hmc.edu/funfacts> |
9 |
| -""" |
10 |
| -import functools |
11 |
| -import math |
12 |
| -import time |
13 |
| -from decimal import Decimal, getcontext |
14 |
| - |
15 |
| -getcontext().prec = 100 |
16 |
| - |
17 |
| - |
18 |
| -def timer_decorator(func): |
19 |
| - @functools.wraps(func) |
20 |
| - def timer_wrapper(*args, **kwargs): |
21 |
| - start = time.time() |
22 |
| - func(*args, **kwargs) |
23 |
| - end = time.time() |
24 |
| - if int(end - start) > 0: |
25 |
| - print(f"Run time for {func.__name__}: {(end - start):0.2f}s") |
26 |
| - else: |
27 |
| - print(f"Run time for {func.__name__}: {(end - start)*1000:0.2f}ms") |
28 |
| - return func(*args, **kwargs) |
29 |
| - |
30 |
| - return timer_wrapper |
31 |
| - |
32 |
| - |
33 |
| -# define Python user-defined exceptions |
34 |
| -class Error(Exception): |
35 |
| - """Base class for other exceptions""" |
36 |
| - |
37 |
| - |
38 |
| -class ValueTooLargeError(Error): |
39 |
| - """Raised when the input value is too large""" |
40 |
| - |
41 |
| - |
42 |
| -class ValueTooSmallError(Error): |
43 |
| - """Raised when the input value is not greater than one""" |
44 |
| - |
45 |
| - |
46 |
| -class ValueLessThanZero(Error): |
47 |
| - """Raised when the input value is less than zero""" |
48 |
| - |
49 |
| - |
50 |
| -def _check_number_input(n, min_thresh, max_thresh=None): |
51 |
| - """ |
52 |
| - :param n: single integer |
53 |
| - :type n: int |
54 |
| - :param min_thresh: min threshold, single integer |
55 |
| - :type min_thresh: int |
56 |
| - :param max_thresh: max threshold, single integer |
57 |
| - :type max_thresh: int |
58 |
| - :return: boolean |
59 |
| - """ |
60 |
| - try: |
61 |
| - if n >= min_thresh and max_thresh is None: |
62 |
| - return True |
63 |
| - elif min_thresh <= n <= max_thresh: |
64 |
| - return True |
65 |
| - elif n < 0: |
66 |
| - raise ValueLessThanZero |
67 |
| - elif n < min_thresh: |
68 |
| - raise ValueTooSmallError |
69 |
| - elif n > max_thresh: |
70 |
| - raise ValueTooLargeError |
71 |
| - except ValueLessThanZero: |
72 |
| - print("Incorrect Input: number must not be less than 0") |
73 |
| - except ValueTooSmallError: |
74 |
| - print( |
75 |
| - f"Incorrect Input: input number must be > {min_thresh} for the recursive " |
76 |
| - "calculation" |
77 |
| - ) |
78 |
| - except ValueTooLargeError: |
79 |
| - print( |
80 |
| - f"Incorrect Input: input number must be < {max_thresh} for the recursive " |
81 |
| - "calculation" |
82 |
| - ) |
83 |
| - return False |
84 |
| - |
85 |
| - |
86 |
| -@timer_decorator |
87 |
| -def fib_iterative(n): |
88 |
| - """ |
89 |
| - :param n: calculate Fibonacci to the nth integer |
90 |
| - :type n:int |
91 |
| - :return: Fibonacci sequence as a list |
92 |
| - """ |
93 |
| - n = int(n) |
94 |
| - if _check_number_input(n, 2): |
95 |
| - seq_out = [0, 1] |
96 |
| - a, b = 0, 1 |
97 |
| - for _ in range(n - len(seq_out)): |
98 |
| - a, b = b, a + b |
99 |
| - seq_out.append(b) |
100 |
| - return seq_out |
101 |
| - |
102 |
| - |
103 |
| -@timer_decorator |
104 |
| -def fib_formula(n): |
105 |
| - """ |
106 |
| - :param n: calculate Fibonacci to the nth integer |
107 |
| - :type n:int |
108 |
| - :return: Fibonacci sequence as a list |
109 |
| - """ |
110 |
| - seq_out = [0, 1] |
111 |
| - n = int(n) |
112 |
| - if _check_number_input(n, 2, 1000000): |
113 |
| - sqrt = Decimal(math.sqrt(5)) |
114 |
| - phi_1 = Decimal(1 + sqrt) / Decimal(2) |
115 |
| - phi_2 = Decimal(1 - sqrt) / Decimal(2) |
116 |
| - for i in range(2, n): |
117 |
| - temp_out = ((phi_1 ** Decimal(i)) - (phi_2 ** Decimal(i))) * ( |
118 |
| - Decimal(sqrt) ** Decimal(-1) |
119 |
| - ) |
120 |
| - seq_out.append(int(temp_out)) |
121 |
| - return seq_out |
122 |
| - |
123 |
| - |
124 |
| -if __name__ == "__main__": |
125 |
| - num = 20 |
126 |
| - # print(f'{fib_recursive(num)}\n') |
127 |
| - # print(f'{fib_iterative(num)}\n') |
128 |
| - # print(f'{fib_formula(num)}\n') |
129 |
| - fib_iterative(num) |
130 |
| - fib_formula(num) |
| 1 | +# fibonacci.py |
| 2 | +""" |
| 3 | +Calculates the Fibonacci sequence using iteration, recursion, and a simplified |
| 4 | +form of Binet's formula |
| 5 | +
|
| 6 | +NOTE 1: the iterative and recursive functions are more accurate than the Binet's |
| 7 | +formula function because the iterative function doesn't use floats |
| 8 | +
|
| 9 | +NOTE 2: the Binet's formula function is much more limited in the size of inputs |
| 10 | +that it can handle due to the size limitations of Python floats |
| 11 | +""" |
| 12 | + |
| 13 | +from math import sqrt |
| 14 | +from time import time |
| 15 | + |
| 16 | + |
| 17 | +def time_func(func, *args, **kwargs): |
| 18 | + """ |
| 19 | + Times the execution of a function with parameters |
| 20 | + """ |
| 21 | + start = time() |
| 22 | + output = func(*args, **kwargs) |
| 23 | + end = time() |
| 24 | + if int(end - start) > 0: |
| 25 | + print(f"{func.__name__} runtime: {(end - start):0.4f} s") |
| 26 | + else: |
| 27 | + print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms") |
| 28 | + return output |
| 29 | + |
| 30 | + |
| 31 | +def fib_iterative(n: int) -> list[int]: |
| 32 | + """ |
| 33 | + Calculates the first n (0-indexed) Fibonacci numbers using iteration |
| 34 | + >>> fib_iterative(0) |
| 35 | + [0] |
| 36 | + >>> fib_iterative(1) |
| 37 | + [0, 1] |
| 38 | + >>> fib_iterative(5) |
| 39 | + [0, 1, 1, 2, 3, 5] |
| 40 | + >>> fib_iterative(10) |
| 41 | + [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
| 42 | + >>> fib_iterative(-1) |
| 43 | + Traceback (most recent call last): |
| 44 | + ... |
| 45 | + Exception: n is negative |
| 46 | + """ |
| 47 | + if n < 0: |
| 48 | + raise Exception("n is negative") |
| 49 | + if n == 0: |
| 50 | + return [0] |
| 51 | + fib = [0, 1] |
| 52 | + for _ in range(n - 1): |
| 53 | + fib.append(fib[-1] + fib[-2]) |
| 54 | + return fib |
| 55 | + |
| 56 | + |
| 57 | +def fib_recursive(n: int) -> list[int]: |
| 58 | + """ |
| 59 | + Calculates the first n (0-indexed) Fibonacci numbers using recursion |
| 60 | + >>> fib_iterative(0) |
| 61 | + [0] |
| 62 | + >>> fib_iterative(1) |
| 63 | + [0, 1] |
| 64 | + >>> fib_iterative(5) |
| 65 | + [0, 1, 1, 2, 3, 5] |
| 66 | + >>> fib_iterative(10) |
| 67 | + [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
| 68 | + >>> fib_iterative(-1) |
| 69 | + Traceback (most recent call last): |
| 70 | + ... |
| 71 | + Exception: n is negative |
| 72 | + """ |
| 73 | + |
| 74 | + def fib_recursive_term(i: int) -> int: |
| 75 | + """ |
| 76 | + Calculates the i-th (0-indexed) Fibonacci number using recursion |
| 77 | + """ |
| 78 | + if i < 0: |
| 79 | + raise Exception("n is negative") |
| 80 | + if i < 2: |
| 81 | + return i |
| 82 | + return fib_recursive_term(i - 1) + fib_recursive_term(i - 2) |
| 83 | + |
| 84 | + if n < 0: |
| 85 | + raise Exception("n is negative") |
| 86 | + return [fib_recursive_term(i) for i in range(n + 1)] |
| 87 | + |
| 88 | + |
| 89 | +def fib_binet(n: int) -> list[int]: |
| 90 | + """ |
| 91 | + Calculates the first n (0-indexed) Fibonacci numbers using a simplified form |
| 92 | + of Binet's formula: |
| 93 | + https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding |
| 94 | +
|
| 95 | + NOTE 1: this function diverges from fib_iterative at around n = 71, likely |
| 96 | + due to compounding floating-point arithmetic errors |
| 97 | +
|
| 98 | + NOTE 2: this function overflows on n >= 1475 because of the size limitations |
| 99 | + of Python floats |
| 100 | + >>> fib_binet(0) |
| 101 | + [0] |
| 102 | + >>> fib_binet(1) |
| 103 | + [0, 1] |
| 104 | + >>> fib_binet(5) |
| 105 | + [0, 1, 1, 2, 3, 5] |
| 106 | + >>> fib_binet(10) |
| 107 | + [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
| 108 | + >>> fib_binet(-1) |
| 109 | + Traceback (most recent call last): |
| 110 | + ... |
| 111 | + Exception: n is negative |
| 112 | + >>> fib_binet(1475) |
| 113 | + Traceback (most recent call last): |
| 114 | + ... |
| 115 | + Exception: n is too large |
| 116 | + """ |
| 117 | + if n < 0: |
| 118 | + raise Exception("n is negative") |
| 119 | + if n >= 1475: |
| 120 | + raise Exception("n is too large") |
| 121 | + sqrt_5 = sqrt(5) |
| 122 | + phi = (1 + sqrt_5) / 2 |
| 123 | + return [round(phi ** i / sqrt_5) for i in range(n + 1)] |
| 124 | + |
| 125 | + |
| 126 | +if __name__ == "__main__": |
| 127 | + num = 20 |
| 128 | + time_func(fib_iterative, num) |
| 129 | + time_func(fib_recursive, num) |
| 130 | + time_func(fib_binet, num) |
0 commit comments