Skip to content

BM25 Inverted Index Search Algorithm #5615

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
220 changes: 220 additions & 0 deletions src/main/java/com/thealgorithms/searches/BM25InvertedIndex.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
package com.thealgorithms.searches;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;

/**
* Inverted Index implementation with BM25 Scoring for movie search.
* This class supports adding movie documents and searching for terms
* within those documents using the BM25 algorithm.
* @author Prayas Kumar (https://github.com/prayas7102)
*/

class Movie {
int docId; // Unique identifier for the movie
String name; // Movie name
double imdbRating; // IMDb rating of the movie
int releaseYear; // Year the movie was released
String content; // Full text content (could be the description or script)

/**
* Constructor for the Movie class.
* @param docId Unique identifier for the movie.
* @param name Name of the movie.
* @param imdbRating IMDb rating of the movie.
* @param releaseYear Release year of the movie.
* @param content Content or description of the movie.
*/
Movie(int docId, String name, double imdbRating, int releaseYear, String content) {
this.docId = docId;
this.name = name;
this.imdbRating = imdbRating;
this.releaseYear = releaseYear;
this.content = content;
}

/**
* Get all the words from the movie's name and content.
* Converts the name and content to lowercase and splits on non-word characters.
* @return Array of words from the movie name and content.
*/
public String[] getWords() {
return (name + " " + content).toLowerCase().split("\\W+");
}

@Override
public String toString() {
return "Movie{"
+ "docId=" + docId + ", name='" + name + '\'' + ", imdbRating=" + imdbRating + ", releaseYear=" + releaseYear + '}';
}
}

class SearchResult {
int docId; // Unique identifier of the movie document
double relevanceScore; // Relevance score based on the BM25 algorithm

/**
* Constructor for SearchResult class.
* @param docId Document ID (movie) for this search result.
* @param relevanceScore The relevance score based on BM25 scoring.
*/
SearchResult(int docId, double relevanceScore) {
this.docId = docId;
this.relevanceScore = relevanceScore;
}

public int getDocId() {
return docId;
}

@Override
public String toString() {
return "SearchResult{"
+ "docId=" + docId + ", relevanceScore=" + relevanceScore + '}';
}

@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
SearchResult that = (SearchResult) o;
return docId == that.docId && Double.compare(that.relevanceScore, relevanceScore) == 0;
}

@Override
public int hashCode() {
return Objects.hash(docId, relevanceScore);
}

public double getRelevanceScore() {
return this.relevanceScore;
}
}

public final class BM25InvertedIndex {
private Map<String, Map<Integer, Integer>> index; // Inverted index mapping terms to document id and frequency
private Map<Integer, Movie> movies; // Mapping of movie document IDs to Movie objects
private int totalDocuments; // Total number of movies/documents
private double avgDocumentLength; // Average length of documents (number of words)
private static final double K = 1.5; // BM25 tuning parameter, controls term frequency saturation
private static final double B = 0.75; // BM25 tuning parameter, controls length normalization

/**
* Constructor for BM25InvertedIndex.
* Initializes the inverted index and movie storage.
*/
BM25InvertedIndex() {
index = new HashMap<>();
movies = new HashMap<>();
totalDocuments = 0;
avgDocumentLength = 0.0;
}

/**
* Add a movie to the index.
* @param docId Unique identifier for the movie.
* @param name Name of the movie.
* @param imdbRating IMDb rating of the movie.
* @param releaseYear Release year of the movie.
* @param content Content or description of the movie.
*/
public void addMovie(int docId, String name, double imdbRating, int releaseYear, String content) {
Movie movie = new Movie(docId, name, imdbRating, releaseYear, content);
movies.put(docId, movie);
totalDocuments++;

// Get words (terms) from the movie's name and content
String[] terms = movie.getWords();
int docLength = terms.length;

// Update the average document length
avgDocumentLength = (avgDocumentLength * (totalDocuments - 1) + docLength) / totalDocuments;

// Update the inverted index
for (String term : terms) {
// Create a new entry if the term is not yet in the index
index.putIfAbsent(term, new HashMap<>());

// Get the list of documents containing the term
Map<Integer, Integer> docList = index.get(term);
if (docList == null) {
docList = new HashMap<>();
index.put(term, docList); // Ensure docList is added to the index
}
// Increment the term frequency in this document
docList.put(docId, docList.getOrDefault(docId, 0) + 1);
}
}

public int getMoviesLength() {
return movies.size();
}

/**
* Search for documents containing a term using BM25 scoring.
* @param term The search term.
* @return A list of search results sorted by relevance score.
*/
public List<SearchResult> search(String term) {
term = term.toLowerCase(); // Normalize search term
if (!index.containsKey(term)) {
return new ArrayList<>(); // Return empty list if term not found
}

Map<Integer, Integer> termDocs = index.get(term); // Documents containing the term
List<SearchResult> results = new ArrayList<>();

// Compute IDF for the search term
double idf = computeIDF(termDocs.size());

// Calculate relevance scores for all documents containing the term
for (Map.Entry<Integer, Integer> entry : termDocs.entrySet()) {
int docId = entry.getKey();
int termFrequency = entry.getValue();
Movie movie = movies.get(docId);
if (movie == null) {
continue; // Skip this document if movie doesn't exist
}
double docLength = movie.getWords().length;

// Compute BM25 relevance score
double score = computeBM25Score(termFrequency, docLength, idf);
results.add(new SearchResult(docId, score));
}

// Sort the results by relevance score in descending order
results.sort((r1, r2) -> Double.compare(r2.relevanceScore, r1.relevanceScore));
return results;
}

/**
* Compute the BM25 score for a given term and document.
* @param termFrequency The frequency of the term in the document.
* @param docLength The length of the document.
* @param idf The inverse document frequency of the term.
* @return The BM25 relevance score for the term in the document.
*/
private double computeBM25Score(int termFrequency, double docLength, double idf) {
double numerator = termFrequency * (K + 1);
double denominator = termFrequency + K * (1 - B + B * (docLength / avgDocumentLength));
return idf * (numerator / denominator);
}

/**
* Compute the inverse document frequency (IDF) of a term.
* The IDF measures the importance of a term across the entire document set.
* @param docFrequency The number of documents that contain the term.
* @return The inverse document frequency (IDF) value.
*/
private double computeIDF(int docFrequency) {
// Total number of documents in the index
return Math.log((totalDocuments - docFrequency + 0.5) / (docFrequency + 0.5));
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
package com.thealgorithms.searches;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;

import java.util.List;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;

/**
* Test Cases for Inverted Index with BM25
* @author Prayas Kumar (https://github.com/prayas7102)
*/

class BM25InvertedIndexTest {

private static BM25InvertedIndex index;

@BeforeAll
static void setUp() {
index = new BM25InvertedIndex();
index.addMovie(1, "The Shawshank Redemption", 9.3, 1994, "Hope is a good thing. Maybe the best of things. And no good thing ever dies.");
index.addMovie(2, "The Godfather", 9.2, 1972, "I'm gonna make him an offer he can't refuse.");
index.addMovie(3, "The Dark Knight", 9.0, 2008, "You either die a hero or live long enough to see yourself become the villain.");
index.addMovie(4, "Pulp Fiction", 8.9, 1994, "You know what they call a Quarter Pounder with Cheese in Paris? They call it a Royale with Cheese.");
index.addMovie(5, "Good Will Hunting", 8.3, 1997, "Will Hunting is a genius and he has a good heart. The best of his abilities is yet to be explored.");
index.addMovie(6, "It's a Wonderful Life", 8.6, 1946, "Each man's life touches so many other lives. If he wasn't around, it would leave an awfully good hole.");
index.addMovie(7, "The Pursuit of Happyness", 8.0, 2006, "It was the pursuit of a better life, and a good opportunity to change things for the better.");
index.addMovie(8, "A Few Good Men", 7.7, 1992, "You can't handle the truth! This movie has a lot of good moments and intense drama.");
}

@Test
void testAddMovie() {
// Check that the index contains the correct number of movies
int moviesLength = index.getMoviesLength();
assertEquals(8, moviesLength);
}

@Test
void testSearchForTermFound() {
int expected = 1;
List<SearchResult> result = index.search("hope");
int actual = result.getFirst().getDocId();
assertEquals(expected, actual);
}

@Test
void testSearchRanking() {
// Perform search for the term "good"
List<SearchResult> results = index.search("good");
assertFalse(results.isEmpty());

// Validate the ranking based on the provided relevance scores
assertEquals(6, results.get(0).getDocId()); // It's a Wonderful Life should be ranked 1st
assertEquals(7, results.get(1).getDocId()); // The Pursuit of Happyness should be ranked 2nd
assertEquals(5, results.get(2).getDocId()); // Good Will Hunting should be ranked 3rd
assertEquals(8, results.get(3).getDocId()); // A Few Good Men should be ranked 4th
assertEquals(1, results.get(4).getDocId()); // The Shawshank Redemption should be ranked 5th

// Ensure the relevance scores are in descending order
for (int i = 0; i < results.size() - 1; i++) {
assertTrue(results.get(i).getRelevanceScore() > results.get(i + 1).getRelevanceScore());
}
}

@Test
void testSearchForTermNotFound() {
List<SearchResult> results = index.search("nonexistent");
assertTrue(results.isEmpty());
}

@Test
void testSearchForCommonTerm() {
List<SearchResult> results = index.search("the");
assertFalse(results.isEmpty());
assertTrue(results.size() > 1);
}

@Test
void testBM25ScoreCalculation() {
List<SearchResult> results = index.search("cheese");
assertEquals(1, results.size());
assertEquals(4, results.getFirst().docId); // Pulp Fiction should have the highest score
}

@Test
void testCaseInsensitivity() {
List<SearchResult> resultsLowerCase = index.search("hope");
List<SearchResult> resultsUpperCase = index.search("HOPE");
assertEquals(resultsLowerCase, resultsUpperCase);
}
}