Skip to content

Refactor Levenshtein distance implementation #5138

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,49 +1,84 @@
package com.thealgorithms.dynamicprogramming;

import java.util.stream.IntStream;

/**
* @author Kshitij VERMA (github.com/kv19971) LEVENSHTEIN DISTANCE dyamic
* programming implementation to show the difference between two strings
* (https://en.wikipedia.org/wiki/Levenshtein_distance)
* Provides functions to calculate the Levenshtein distance between two strings.
*
* The Levenshtein distance is a measure of the similarity between two strings by calculating the minimum number of single-character
* edits (insertions, deletions, or substitutions) required to change one string into the other.
*/
public class LevenshteinDistance {

private static int minimum(int a, int b, int c) {
if (a < b && a < c) {
return a;
} else if (b < a && b < c) {
return b;
} else {
return c;
}
public final class LevenshteinDistance {
private LevenshteinDistance() {
}

public static int calculateLevenshteinDistance(String str1, String str2) {
int len1 = str1.length() + 1;
int len2 = str2.length() + 1;
int[][] distanceMat = new int[len1][len2];
for (int i = 0; i < len1; i++) {
distanceMat[i][0] = i;
}
for (int j = 0; j < len2; j++) {
distanceMat[0][j] = j;
/**
* Calculates the Levenshtein distance between two strings using a naive dynamic programming approach.
*
* This function computes the Levenshtein distance by constructing a dynamic programming matrix and iteratively filling it in.
* It follows the standard top-to-bottom, left-to-right approach for filling in the matrix.
*
* @param string1 The first string.
* @param string2 The second string.
* @return The Levenshtein distance between the two input strings.
*
* Time complexity: O(nm),
* Space complexity: O(nm),
*
* where n and m are lengths of `string1` and `string2`.
*
* Note that this implementation uses a straightforward dynamic programming approach without any space optimization.
* It may consume more memory for larger input strings compared to the optimized version.
*/
public static int naiveLevenshteinDistance(final String string1, final String string2) {
int[][] distanceMatrix = IntStream.rangeClosed(0, string1.length()).mapToObj(i -> IntStream.rangeClosed(0, string2.length()).map(j -> (i == 0) ? j : (j == 0) ? i : 0).toArray()).toArray(int[][] ::new);

IntStream.range(1, string1.length() + 1).forEach(i -> IntStream.range(1, string2.length() + 1).forEach(j -> {
final int cost = (string1.charAt(i - 1) == string2.charAt(j - 1)) ? 0 : 1;
distanceMatrix[i][j] = Math.min(distanceMatrix[i - 1][j - 1] + cost, Math.min(distanceMatrix[i][j - 1] + 1, distanceMatrix[i - 1][j] + 1));
}));

return distanceMatrix[string1.length()][string2.length()];
}

/**
* Calculates the Levenshtein distance between two strings using an optimized dynamic programming approach.
*
* This edit distance is defined as 1 point per insertion, substitution, or deletion required to make the strings equal.
*
* @param string1 The first string.
* @param string2 The second string.
* @return The Levenshtein distance between the two input strings.
*
* Time complexity: O(nm),
* Space complexity: O(n),
*
* where n and m are lengths of `string1` and `string2`.
*
* Note that this implementation utilizes an optimized dynamic programming approach, significantly reducing the space complexity from O(nm) to O(n), where n and m are the lengths of `string1` and `string2`.
*
* Additionally, it minimizes space usage by leveraging the shortest string horizontally and the longest string vertically in the computation matrix.
*/
public static int optimizedLevenshteinDistance(final String string1, final String string2) {
if (string1.isEmpty()) {
return string2.length();
}
for (int i = 1; i < len1; i++) {
for (int j = 1; j < len2; j++) {
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
distanceMat[i][j] = distanceMat[i - 1][j - 1];
} else {
distanceMat[i][j] = 1 + minimum(distanceMat[i - 1][j], distanceMat[i - 1][j - 1], distanceMat[i][j - 1]);
}

int[] previousDistance = IntStream.rangeClosed(0, string1.length()).toArray();

for (int j = 1; j <= string2.length(); j++) {
int prevSubstitutionCost = previousDistance[0];
previousDistance[0] = j;

for (int i = 1; i <= string1.length(); i++) {
final int deletionCost = previousDistance[i] + 1;
final int insertionCost = previousDistance[i - 1] + 1;
final int substitutionCost = (string1.charAt(i - 1) == string2.charAt(j - 1)) ? prevSubstitutionCost : prevSubstitutionCost + 1;
prevSubstitutionCost = previousDistance[i];
previousDistance[i] = Math.min(deletionCost, Math.min(insertionCost, substitutionCost));
}
}
return distanceMat[len1 - 1][len2 - 1];
}

public static void main(String[] args) {
String str1 = ""; // enter your string here
String str2 = ""; // enter your string here

System.out.print("Levenshtein distance between " + str1 + " and " + str2 + " is: ");
System.out.println(calculateLevenshteinDistance(str1, str2));
return previousDistance[string1.length()];
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,44 @@

import static org.junit.jupiter.api.Assertions.assertEquals;

import java.util.Arrays;
import java.util.List;
import java.util.function.ToIntBiFunction;
import java.util.stream.Stream;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;

public class LevenshteinDistanceTests {

@ParameterizedTest
@CsvSource({"dog,cat,3", "sunday,saturday,3", "cat,cats,1", "rain,train,1"})
void levenshteinDistanceTest(String str1, String str2, int distance) {
int result = LevenshteinDistance.calculateLevenshteinDistance(str1, str2);
assertEquals(distance, result);
@MethodSource("testCases")
public void testLevenshteinDistance(final int expected, final String str1, final String str2, final ToIntBiFunction<String, String> dist) {
assertEquals(expected, dist.applyAsInt(str1, str2));
assertEquals(expected, dist.applyAsInt(str2, str1));
assertEquals(0, dist.applyAsInt(str1, str1));
assertEquals(0, dist.applyAsInt(str2, str2));
}

private static Stream<Arguments> testCases() {
final Object[][] testData = {
{0, "", ""},
{0, "Hello, World!", "Hello, World!"},
{4, "", "Rust"},
{3, "horse", "ros"},
{6, "tan", "elephant"},
{8, "execute", "intention"},
{1, "a", "b"},
{1, "a", "aa"},
{1, "a", ""},
{1, "a", "ab"},
{1, "a", "ba"},
{2, "a", "bc"},
{2, "a", "cb"},
};

final List<ToIntBiFunction<String, String>> methods = Arrays.asList(LevenshteinDistance::naiveLevenshteinDistance, LevenshteinDistance::optimizedLevenshteinDistance);

return Stream.of(testData).flatMap(input -> methods.stream().map(method -> Arguments.of(input[0], input[1], input[2], method)));
}
}