Skip to content

Make sam changes to enable DDP training #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 21 additions & 8 deletions segmentation_models_pytorch/decoders/sam/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@

import torch
from segment_anything.modeling import MaskDecoder, TwoWayTransformer, PromptEncoder
from segment_anything.modeling.prompt_encoder import PositionEmbeddingRandom
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo

Expand Down Expand Up @@ -86,13 +88,12 @@ def __init__(
out_chans=decoder_channels,
)

# this params are used instead of prompt_encoder
image_embedding_size = image_size // vit_patch_size
self.prompt_encoder = PromptEncoder(
embed_dim=decoder_channels,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
)
self.embed_dim = decoder_channels
self.image_embedding_size = (image_embedding_size, image_embedding_size)
self.pe_layer = PositionEmbeddingRandom(decoder_channels // 2)
self.no_mask_embed = nn.Embedding(1, decoder_channels)

self.decoder = MaskDecoder(
num_multimask_outputs=3,
Expand Down Expand Up @@ -185,10 +186,11 @@ def forward(self, x):
img_size = x.shape[-2:]
x = torch.stack([self.preprocess(img) for img in x])
features = self.encoder(x)
sparse_embeddings, dense_embeddings = self.prompt_encoder(points=None, boxes=None, masks=None)
# sparse_embeddings, dense_embeddings = self.prompt_encoder(points=None, boxes=None, masks=None)
sparse_embeddings, dense_embeddings = self._get_dummy_promp_encoder_output(x.size(0))
low_res_masks, iou_predictions = self.decoder(
image_embeddings=features,
image_pe=self.prompt_encoder.get_dense_pe(),
image_pe=self._get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=self._decoder_multiclass_output,
Expand All @@ -198,3 +200,14 @@ def forward(self, x):
masks = masks * iou_predictions.view(-1, masks.size(1), 1, 1)
output = self.segmentation_head(masks)
return output

def _get_dummy_promp_encoder_output(self, bs):
"""Use this dummy output as we're training without prompts."""
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self.no_mask_embed.weight.device)
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings

def _get_dense_pe(self):
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
5 changes: 5 additions & 0 deletions segmentation_models_pytorch/encoders/sam.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,11 @@ def __init__(self, name: str, **kwargs):
super().__init__(**kwargs)
self._name = name
self._depth = kwargs["depth"]
self._out_chans = kwargs.get("out_chans", 256)

@property
def out_channels(self):
return [-1, self._out_chans]


sam_vit_encoders = {
Expand Down