Skip to content

Commit 20b9a01

Browse files
Tom's Sept 1 edtis of Cass-Koopmans lecture 1
1 parent b11d0bb commit 20b9a01

File tree

1 file changed

+19
-5
lines changed

1 file changed

+19
-5
lines changed

lectures/cass_koopmans_1.md

Lines changed: 19 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -338,7 +338,7 @@ to $K_{T+1}$ and applying the following **Karush-Kuhn-Tucker condition** (KKT)
338338
Combining {eq}`constraint1` and {eq}`constraint2` gives
339339
340340
$$
341-
u'\left(C_t\right)\left[(1-\delta)+f'\left(K_t\right)\right]-u'\left(C_{t-1}\right)=0
341+
\beta u'\left(C_t\right)\left[(1-\delta)+f'\left(K_t\right)\right]-u'\left(C_{t-1}\right)=0
342342
\quad \text{ for all } t=1,2,\dots, T+1
343343
$$
344344
@@ -347,7 +347,7 @@ which can be rearranged to become
347347
```{math}
348348
:label: l12
349349
350-
u'\left(C_{t+1}\right)\left[(1-\delta)+f'\left(K_{t+1}\right)\right]=
350+
\beta u'\left(C_{t+1}\right)\left[(1-\delta)+f'\left(K_{t+1}\right)\right]=
351351
u'\left(C_{t}\right) \quad \text{ for all } t=0,1,\dots, T
352352
```
353353
@@ -363,11 +363,25 @@ equation**
363363
364364
$$
365365
\begin{aligned} C_{t+1} =\left(\beta C_t^{\gamma}[f'(K_{t+1}) +
366-
(1-\delta)]\right)^{1/\gamma} \notag\\= C_t\left(\beta [f'(K_{t+1}) +
367-
(1-\delta)]\right)^{1/\gamma} \end{aligned}
366+
(1-\delta)]\right)^{1/\gamma}
367+
%\notag\\= C_t\left(\beta [f'(K_{t+1}) +
368+
%(1-\delta)]\right)^{1/\gamma}
369+
\end{aligned}
370+
$$
371+
372+
which we can combine with the feasibility constraint {eq}`allocation` to get
373+
374+
$$
375+
\begin{aligned}
376+
C_{t+1} & = C_t\left(\beta [f'(F(K_t,1)+ (1-\delta) K_t - C_t) +
377+
(1-\delta)]\right)^{1/\gamma} \\
378+
K_{t+1} & = F(K_t,1)+ (1-\delta) K_t - C_t .
379+
\end{aligned}
368380
$$
369381
370-
This is a non-linear first-order difference equation that an optimal sequence $\vec C$ must satisfy.
382+
This is a pair of non-linear first-order difference equations that map $C_t, K_t$ into $C_{t+1}, K_{t+1}$ and that an optimal sequence $\vec C , \vec K$ must satisfy.
383+
384+
It must also satisfy the initial condition that $K_0$ is given and $K_{T+1} = 0$.
371385
372386
Below we define a `jitclass` that stores parameters and functions
373387
that define our economy.

0 commit comments

Comments
 (0)