@@ -5,11 +5,6 @@ v.0.7.3 (April 12, 2012)
5
5
6
6
{{ header }}
7
7
8
- .. ipython :: python
9
- :suppress:
10
-
11
- from pandas import * # noqa F401, F403
12
-
13
8
14
9
This is a minor release from 0.7.2 and fixes many minor bugs and adds a number
15
10
of nice new features. There are also a couple of API changes to note; these
@@ -28,7 +23,7 @@ New features
28
23
.. code-block :: python
29
24
30
25
from pandas.tools.plotting import scatter_matrix
31
- scatter_matrix(df, alpha = 0.2 )
26
+ scatter_matrix(df, alpha = 0.2 ) # noqa F821
32
27
33
28
.. image :: ../savefig/scatter_matrix_kde.png
34
29
:width: 5in
@@ -38,14 +33,14 @@ New features
38
33
39
34
.. code-block :: python
40
35
41
- df.plot(kind = ' bar' , stacked = True )
36
+ df.plot(kind = ' bar' , stacked = True ) # noqa F821
42
37
43
38
.. image :: ../savefig/bar_plot_stacked_ex.png
44
39
:width: 4in
45
40
46
41
.. code-block :: python
47
42
48
- df.plot(kind = ' barh' , stacked = True )
43
+ df.plot(kind = ' barh' , stacked = True ) # noqa F821
49
44
50
45
.. image :: ../savefig/barh_plot_stacked_ex.png
51
46
:width: 4in
@@ -63,7 +58,7 @@ Reverted some changes to how NA values (represented typically as ``NaN`` or
63
58
64
59
.. ipython :: python
65
60
66
- series = Series([' Steve' , np.nan, ' Joe' ])
61
+ series = pd. Series([' Steve' , np.nan, ' Joe' ])
67
62
series == ' Steve'
68
63
series != ' Steve'
69
64
@@ -93,15 +88,15 @@ Series, to be more consistent with the ``groupby`` behavior with DataFrame:
93
88
.. ipython :: python
94
89
:okwarning:
95
90
96
- df = DataFrame({' A' : [' foo' , ' bar' , ' foo' , ' bar' ,
97
- ' foo' , ' bar' , ' foo' , ' foo' ],
98
- ' B' : [' one' , ' one' , ' two' , ' three' ,
99
- ' two' , ' two' , ' one' , ' three' ],
100
- ' C' : np.random.randn(8 ), ' D' : np.random.randn(8 )})
91
+ df = pd. DataFrame({' A' : [' foo' , ' bar' , ' foo' , ' bar' ,
92
+ ' foo' , ' bar' , ' foo' , ' foo' ],
93
+ ' B' : [' one' , ' one' , ' two' , ' three' ,
94
+ ' two' , ' two' , ' one' , ' three' ],
95
+ ' C' : np.random.randn(8 ), ' D' : np.random.randn(8 )})
101
96
df
102
97
grouped = df.groupby(' A' )[' C' ]
103
98
grouped.describe()
104
- grouped.apply(lambda x : x.sort_values()[- 2 :]) # top 2 values
99
+ grouped.apply(lambda x : x.sort_values()[- 2 :]) # top 2 values
105
100
106
101
107
102
.. _whatsnew_0.7.3.contributors :
0 commit comments