@@ -6324,23 +6324,72 @@ def tshift(self, periods=1, freq=None, axis=0):
6324
6324
return self ._constructor (new_data ).__finalize__ (self )
6325
6325
6326
6326
def truncate (self , before = None , after = None , axis = None , copy = True ):
6327
- """Truncates a sorted NDFrame before and/or after some particular
6328
- index value. If the axis contains only datetime values, before/after
6329
- parameters are converted to datetime values.
6327
+ """
6328
+ Truncates a sorted DataFrame/Series before and/or after some
6329
+ particular index value. If the axis contains only datetime values,
6330
+ before/after parameters are converted to datetime values.
6330
6331
6331
6332
Parameters
6332
6333
----------
6333
- before : date
6334
- Truncate before index value
6335
- after : date
6336
- Truncate after index value
6337
- axis : the truncation axis, defaults to the stat axis
6334
+ before : date, string, int
6335
+ Truncate all rows before this index value
6336
+ after : date, string, int
6337
+ Truncate all rows after this index value
6338
+ axis : {0 or 'index', 1 or 'columns'}
6339
+
6340
+ * 0 or 'index': apply truncation to rows
6341
+ * 1 or 'columns': apply truncation to columns
6342
+ Default is stat axis for given data type (0 for Series and
6343
+ DataFrames, 1 for Panels)
6338
6344
copy : boolean, default is True,
6339
6345
return a copy of the truncated section
6340
6346
6341
6347
Returns
6342
6348
-------
6343
6349
truncated : type of caller
6350
+
6351
+ Examples
6352
+ --------
6353
+ >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
6354
+ ... 'B': ['f', 'g', 'h', 'i', 'j'],
6355
+ ... 'C': ['k', 'l', 'm', 'n', 'o']},
6356
+ ... index=[1, 2, 3, 4, 5])
6357
+ >>> df.truncate(before=2, after=4)
6358
+ A B C
6359
+ 2 b g l
6360
+ 3 c h m
6361
+ 4 d i n
6362
+ >>> df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
6363
+ ... 'B': [6, 7, 8, 9, 10],
6364
+ ... 'C': [11, 12, 13, 14, 15]},
6365
+ ... index=['a', 'b', 'c', 'd', 'e'])
6366
+ >>> df.truncate(before='b', after='d')
6367
+ A B C
6368
+ b 2 7 12
6369
+ c 3 8 13
6370
+ d 4 9 14
6371
+
6372
+ The index values in ``truncate`` can be datetimes or string
6373
+ dates. Note that ``truncate`` assumes a 0 value for any unspecified
6374
+ date component in a ``DatetimeIndex`` in contrast to slicing which
6375
+ returns any partially matching dates.
6376
+
6377
+ >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
6378
+ >>> df = pd.DataFrame(index=dates, data={'A': 1})
6379
+ >>> df.truncate('2016-01-05', '2016-01-10').tail()
6380
+ A
6381
+ 2016-01-09 23:59:56 1
6382
+ 2016-01-09 23:59:57 1
6383
+ 2016-01-09 23:59:58 1
6384
+ 2016-01-09 23:59:59 1
6385
+ 2016-01-10 00:00:00 1
6386
+ >>> df.loc['2016-01-05':'2016-01-10', :].tail()
6387
+ A
6388
+ 2016-01-10 23:59:55 1
6389
+ 2016-01-10 23:59:56 1
6390
+ 2016-01-10 23:59:57 1
6391
+ 2016-01-10 23:59:58 1
6392
+ 2016-01-10 23:59:59 1
6344
6393
"""
6345
6394
6346
6395
if axis is None :
0 commit comments