Given an array of distinct integers nums
and a target integer target
, return the number of possible combinations that add up to target
.
The answer is guaranteed to fit in a 32-bit integer.
Example 1:
Input: nums = [1,2,3], target = 4 Output: 7 Explanation: The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations.
Example 2:
Input: nums = [9], target = 3 Output: 0
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
- All the elements of
nums
are unique. 1 <= target <= 1000
Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?
dp[i]
represents the number of element combinations whose sum is i
.
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0 for i in range(target + 1)]
dp[0] = 1
for i in range(1, target + 1):
for num in nums:
if i - num >= 0:
dp[i] += dp[i - num]
return dp[target]
class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for (int i = 1; i <= target; i++) {
for (int num : nums) {
if (i - num >= 0) {
dp[i] += dp[i - num];
}
}
}
return dp[target];
}
}