|
1 |
| - |
| 1 | +""" |
| 2 | +Project Euler Problem [50]: https://projecteuler.net/problem=50 |
| 3 | + |
| 4 | +
|
| 5 | +The prime 41, can be written as the sum of six consecutive primes: |
| 6 | +41 = 2 + 3 + 5 + 7 + 11 + 13 |
| 7 | +
|
| 8 | +This is the longest sum of consecutive primes that adds to a prime below one-hundred. |
| 9 | +
|
| 10 | +The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953. |
| 11 | +
|
| 12 | +Which prime, below one-million, can be written as the sum of the most consecutive primes? |
| 13 | +""" |
| 14 | + |
| 15 | + |
| 16 | +def is_prime(number: int) -> [bool]: |
| 17 | + """ |
| 18 | + Test to see if the number is prime |
| 19 | + """ |
| 20 | + i = 2 # begin from the smallest prime |
| 21 | + |
| 22 | + # if the number is a composite then it will atleat have a |
| 23 | + # factor less than equal to its square root |
| 24 | + |
| 25 | + while i * i <= number: |
| 26 | + # if number is divisible by i then i is a factor of number |
| 27 | + if number % i == 0: |
| 28 | + return False |
| 29 | + i += 1 |
| 30 | + return True |
| 31 | + |
| 32 | +def sieve_of_eratosthenes(limit: int) -> [list]: |
| 33 | + """ |
| 34 | + Returns a list of boolean values that indicate |
| 35 | + whether number at a given index is prime |
| 36 | + """ |
| 37 | + is_prime_number = [True] * (limit + 1) |
| 38 | + i = 2 # begin from the smallest prime |
| 39 | + while i * i <= limit: |
| 40 | + if is_prime_number[i]: |
| 41 | + for j in range(2*i, limit + 1, i): |
| 42 | + is_prime_number[j] = False |
| 43 | + i += 1 |
| 44 | + return is_prime_number |
| 45 | + |
| 46 | +def solution(limit: int = 1_000_000): |
| 47 | + """ |
| 48 | + Get the prime number less than limit which is |
| 49 | + longest sum of consecutive primes. |
| 50 | +
|
| 51 | + >>> solution(100) |
| 52 | + 41 |
| 53 | + >> solution(1000) |
| 54 | + 953 |
| 55 | + """ |
| 56 | + prime_number = 0 #result |
| 57 | + max_length = 0 #length |
| 58 | + is_prime_number = sieve_of_eratosthenes(limit) |
| 59 | + primes = [] |
| 60 | + for i in range(2, limit): |
| 61 | + if is_prime_number[i]: |
| 62 | + primes.append(i) |
| 63 | + for i in range(len(primes)): |
| 64 | + total = 0 |
| 65 | + for j in range(i, len(primes)): |
| 66 | + total += primes[j] |
| 67 | + if total >= limit: |
| 68 | + break |
| 69 | + if is_prime(total): |
| 70 | + if max_length < j - i + 1: |
| 71 | + prime_number = total |
| 72 | + max_length = j - i + 1 |
| 73 | + |
| 74 | + return prime_number |
| 75 | + |
| 76 | +if __name__ == "__main__": |
| 77 | + print(f"{solution() = }") |
| 78 | + |
| 79 | + |
0 commit comments