forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_json.py
1404 lines (1210 loc) · 44.2 KB
/
_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from abc import (
ABC,
abstractmethod,
)
from collections import abc
from itertools import islice
from typing import (
TYPE_CHECKING,
Any,
Generic,
Literal,
TypeVar,
final,
overload,
)
import numpy as np
from pandas._libs import lib
from pandas._libs.json import (
ujson_dumps,
ujson_loads,
)
from pandas._libs.tslibs import iNaT
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.common import (
ensure_str,
is_string_dtype,
)
from pandas.core.dtypes.dtypes import PeriodDtype
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
isna,
notna,
to_datetime,
)
from pandas.core.reshape.concat import concat
from pandas.core.shared_docs import _shared_docs
from pandas.io._util import arrow_table_to_pandas
from pandas.io.common import (
IOHandles,
dedup_names,
get_handle,
is_potential_multi_index,
stringify_path,
)
from pandas.io.json._normalize import convert_to_line_delimits
from pandas.io.json._table_schema import (
build_table_schema,
parse_table_schema,
set_default_names,
)
from pandas.io.parsers.readers import validate_integer
if TYPE_CHECKING:
from collections.abc import (
Callable,
Hashable,
Mapping,
)
from types import TracebackType
from pandas._typing import (
CompressionOptions,
DtypeArg,
DtypeBackend,
FilePath,
IndexLabel,
JSONEngine,
JSONSerializable,
ReadBuffer,
Self,
StorageOptions,
WriteBuffer,
)
from pandas.core.generic import NDFrame
FrameSeriesStrT = TypeVar("FrameSeriesStrT", bound=Literal["frame", "series"])
# interface to/from
@overload
def to_json(
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes],
obj: NDFrame,
orient: str | None = ...,
date_format: str = ...,
double_precision: int = ...,
force_ascii: bool = ...,
date_unit: str = ...,
default_handler: Callable[[Any], JSONSerializable] | None = ...,
lines: bool = ...,
compression: CompressionOptions = ...,
index: bool | None = ...,
indent: int = ...,
storage_options: StorageOptions = ...,
mode: Literal["a", "w"] = ...,
) -> None: ...
@overload
def to_json(
path_or_buf: None,
obj: NDFrame,
orient: str | None = ...,
date_format: str = ...,
double_precision: int = ...,
force_ascii: bool = ...,
date_unit: str = ...,
default_handler: Callable[[Any], JSONSerializable] | None = ...,
lines: bool = ...,
compression: CompressionOptions = ...,
index: bool | None = ...,
indent: int = ...,
storage_options: StorageOptions = ...,
mode: Literal["a", "w"] = ...,
) -> str: ...
def to_json(
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] | None,
obj: NDFrame,
orient: str | None = None,
date_format: str = "epoch",
double_precision: int = 10,
force_ascii: bool = True,
date_unit: str = "ms",
default_handler: Callable[[Any], JSONSerializable] | None = None,
lines: bool = False,
compression: CompressionOptions = "infer",
index: bool | None = None,
indent: int = 0,
storage_options: StorageOptions | None = None,
mode: Literal["a", "w"] = "w",
) -> str | None:
if orient in ["records", "values"] and index is True:
raise ValueError(
"'index=True' is only valid when 'orient' is 'split', 'table', "
"'index', or 'columns'."
)
elif orient in ["index", "columns"] and index is False:
raise ValueError(
"'index=False' is only valid when 'orient' is 'split', 'table', "
"'records', or 'values'."
)
elif index is None:
# will be ignored for orient='records' and 'values'
index = True
if lines and orient != "records":
raise ValueError("'lines' keyword only valid when 'orient' is records")
if mode not in ["a", "w"]:
msg = (
f"mode={mode} is not a valid option."
"Only 'w' and 'a' are currently supported."
)
raise ValueError(msg)
if mode == "a" and (not lines or orient != "records"):
msg = (
"mode='a' (append) is only supported when "
"lines is True and orient is 'records'"
)
raise ValueError(msg)
if orient == "table" and isinstance(obj, Series):
obj = obj.to_frame(name=obj.name or "values")
writer: type[Writer]
if orient == "table" and isinstance(obj, DataFrame):
writer = JSONTableWriter
elif isinstance(obj, Series):
writer = SeriesWriter
elif isinstance(obj, DataFrame):
writer = FrameWriter
else:
raise NotImplementedError("'obj' should be a Series or a DataFrame")
s = writer(
obj,
orient=orient,
date_format=date_format,
double_precision=double_precision,
ensure_ascii=force_ascii,
date_unit=date_unit,
default_handler=default_handler,
index=index,
indent=indent,
).write()
if lines:
s = convert_to_line_delimits(s)
if path_or_buf is not None:
# apply compression and byte/text conversion
with get_handle(
path_or_buf, mode, compression=compression, storage_options=storage_options
) as handles:
handles.handle.write(s)
else:
return s
return None
class Writer(ABC):
_default_orient: str
def __init__(
self,
obj: NDFrame,
orient: str | None,
date_format: str,
double_precision: int,
ensure_ascii: bool,
date_unit: str,
index: bool,
default_handler: Callable[[Any], JSONSerializable] | None = None,
indent: int = 0,
) -> None:
self.obj = obj
if orient is None:
orient = self._default_orient
self.orient = orient
self.date_format = date_format
self.double_precision = double_precision
self.ensure_ascii = ensure_ascii
self.date_unit = date_unit
self.default_handler = default_handler
self.index = index
self.indent = indent
self._format_axes()
def _format_axes(self) -> None:
raise AbstractMethodError(self)
def write(self) -> str:
iso_dates = self.date_format == "iso"
return ujson_dumps(
self.obj_to_write,
orient=self.orient,
double_precision=self.double_precision,
ensure_ascii=self.ensure_ascii,
date_unit=self.date_unit,
iso_dates=iso_dates,
default_handler=self.default_handler,
indent=self.indent,
)
@property
@abstractmethod
def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
"""Object to write in JSON format."""
class SeriesWriter(Writer):
_default_orient = "index"
@property
def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
if not self.index and self.orient == "split":
return {"name": self.obj.name, "data": self.obj.values}
else:
return self.obj
def _format_axes(self) -> None:
if not self.obj.index.is_unique and self.orient == "index":
raise ValueError(f"Series index must be unique for orient='{self.orient}'")
class FrameWriter(Writer):
_default_orient = "columns"
@property
def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
if not self.index and self.orient == "split":
obj_to_write = self.obj.to_dict(orient="split")
del obj_to_write["index"]
else:
obj_to_write = self.obj
return obj_to_write
def _format_axes(self) -> None:
"""
Try to format axes if they are datelike.
"""
if not self.obj.index.is_unique and self.orient in ("index", "columns"):
raise ValueError(
f"DataFrame index must be unique for orient='{self.orient}'."
)
if not self.obj.columns.is_unique and self.orient in (
"index",
"columns",
"records",
):
raise ValueError(
f"DataFrame columns must be unique for orient='{self.orient}'."
)
class JSONTableWriter(FrameWriter):
_default_orient = "records"
def __init__(
self,
obj,
orient: str | None,
date_format: str,
double_precision: int,
ensure_ascii: bool,
date_unit: str,
index: bool,
default_handler: Callable[[Any], JSONSerializable] | None = None,
indent: int = 0,
) -> None:
"""
Adds a `schema` attribute with the Table Schema, resets
the index (can't do in caller, because the schema inference needs
to know what the index is, forces orient to records, and forces
date_format to 'iso'.
"""
super().__init__(
obj,
orient,
date_format,
double_precision,
ensure_ascii,
date_unit,
index,
default_handler=default_handler,
indent=indent,
)
if date_format != "iso":
msg = (
"Trying to write with `orient='table'` and "
f"`date_format='{date_format}'`. Table Schema requires dates "
"to be formatted with `date_format='iso'`"
)
raise ValueError(msg)
self.schema = build_table_schema(obj, index=self.index)
if self.index:
obj = set_default_names(obj)
# NotImplemented on a column MultiIndex
if obj.ndim == 2 and isinstance(obj.columns, MultiIndex):
raise NotImplementedError(
"orient='table' is not supported for MultiIndex columns"
)
# TODO: Do this timedelta properly in objToJSON.c See GH #15137
if ((obj.ndim == 1) and (obj.name in set(obj.index.names))) or len(
obj.columns.intersection(obj.index.names)
):
msg = "Overlapping names between the index and columns"
raise ValueError(msg)
timedeltas = obj.select_dtypes(include=["timedelta"]).columns
copied = False
if len(timedeltas):
obj = obj.copy()
copied = True
obj[timedeltas] = obj[timedeltas].map(lambda x: x.isoformat())
# exclude index from obj if index=False
if not self.index:
self.obj = obj.reset_index(drop=True)
else:
# Convert PeriodIndex to datetimes before serializing
if isinstance(obj.index.dtype, PeriodDtype):
if not copied:
obj = obj.copy(deep=False)
obj.index = obj.index.to_timestamp()
self.obj = obj.reset_index(drop=False)
self.date_format = "iso"
self.orient = "records"
self.index = index
@property
def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
return {"schema": self.schema, "data": self.obj}
@overload
def read_json(
path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
*,
orient: str | None = ...,
typ: Literal["frame"] = ...,
dtype: DtypeArg | None = ...,
convert_axes: bool | None = ...,
convert_dates: bool | list[str] = ...,
keep_default_dates: bool = ...,
precise_float: bool = ...,
date_unit: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
lines: bool = ...,
chunksize: int,
compression: CompressionOptions = ...,
nrows: int | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
engine: JSONEngine = ...,
) -> JsonReader[Literal["frame"]]: ...
@overload
def read_json(
path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
*,
orient: str | None = ...,
typ: Literal["series"],
dtype: DtypeArg | None = ...,
convert_axes: bool | None = ...,
convert_dates: bool | list[str] = ...,
keep_default_dates: bool = ...,
precise_float: bool = ...,
date_unit: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
lines: bool = ...,
chunksize: int,
compression: CompressionOptions = ...,
nrows: int | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
engine: JSONEngine = ...,
) -> JsonReader[Literal["series"]]: ...
@overload
def read_json(
path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
*,
orient: str | None = ...,
typ: Literal["series"],
dtype: DtypeArg | None = ...,
convert_axes: bool | None = ...,
convert_dates: bool | list[str] = ...,
keep_default_dates: bool = ...,
precise_float: bool = ...,
date_unit: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
lines: bool = ...,
chunksize: None = ...,
compression: CompressionOptions = ...,
nrows: int | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
engine: JSONEngine = ...,
) -> Series: ...
@overload
def read_json(
path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
*,
orient: str | None = ...,
typ: Literal["frame"] = ...,
dtype: DtypeArg | None = ...,
convert_axes: bool | None = ...,
convert_dates: bool | list[str] = ...,
keep_default_dates: bool = ...,
precise_float: bool = ...,
date_unit: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
lines: bool = ...,
chunksize: None = ...,
compression: CompressionOptions = ...,
nrows: int | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
engine: JSONEngine = ...,
) -> DataFrame: ...
@doc(
storage_options=_shared_docs["storage_options"],
decompression_options=_shared_docs["decompression_options"] % "path_or_buf",
)
def read_json(
path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
*,
orient: str | None = None,
typ: Literal["frame", "series"] = "frame",
dtype: DtypeArg | None = None,
convert_axes: bool | None = None,
convert_dates: bool | list[str] = True,
keep_default_dates: bool = True,
precise_float: bool = False,
date_unit: str | None = None,
encoding: str | None = None,
encoding_errors: str | None = "strict",
lines: bool = False,
chunksize: int | None = None,
compression: CompressionOptions = "infer",
nrows: int | None = None,
storage_options: StorageOptions | None = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
engine: JSONEngine = "ujson",
) -> DataFrame | Series | JsonReader:
"""
Convert a JSON string to pandas object.
This method reads JSON files or JSON-like data and converts them into pandas
objects. It supports a variety of input formats, including line-delimited JSON,
compressed files, and various data representations (table, records, index-based,
etc.). When `chunksize` is specified, an iterator is returned instead of loading
the entire data into memory.
Parameters
----------
path_or_buf : a str path, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.json``.
If you want to pass in a path object, pandas accepts any
``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handle (e.g. via builtin ``open`` function)
or ``StringIO``.
.. deprecated:: 2.1.0
Passing json literal strings is deprecated.
orient : str, optional
Indication of expected JSON string format.
Compatible JSON strings can be produced by ``to_json()`` with a
corresponding orient value.
The set of possible orients is:
- ``'split'`` : dict like
``{{index -> [index], columns -> [columns], data -> [values]}}``
- ``'records'`` : list like
``[{{column -> value}}, ... , {{column -> value}}]``
- ``'index'`` : dict like ``{{index -> {{column -> value}}}}``
- ``'columns'`` : dict like ``{{column -> {{index -> value}}}}``
- ``'values'`` : just the values array
- ``'table'`` : dict like ``{{'schema': {{schema}}, 'data': {{data}}}}``
The allowed and default values depend on the value
of the `typ` parameter.
* when ``typ == 'series'``,
- allowed orients are ``{{'split','records','index'}}``
- default is ``'index'``
- The Series index must be unique for orient ``'index'``.
* when ``typ == 'frame'``,
- allowed orients are ``{{'split','records','index',
'columns','values', 'table'}}``
- default is ``'columns'``
- The DataFrame index must be unique for orients ``'index'`` and
``'columns'``.
- The DataFrame columns must be unique for orients ``'index'``,
``'columns'``, and ``'records'``.
typ : {{'frame', 'series'}}, default 'frame'
The type of object to recover.
dtype : bool or dict, default None
If True, infer dtypes; if a dict of column to dtype, then use those;
if False, then don't infer dtypes at all, applies only to the data.
For all ``orient`` values except ``'table'``, default is True.
convert_axes : bool, default None
Try to convert the axes to the proper dtypes.
For all ``orient`` values except ``'table'``, default is True.
convert_dates : bool or list of str, default True
If True then default datelike columns may be converted (depending on
keep_default_dates).
If False, no dates will be converted.
If a list of column names, then those columns will be converted and
default datelike columns may also be converted (depending on
keep_default_dates).
keep_default_dates : bool, default True
If parsing dates (convert_dates is not False), then try to parse the
default datelike columns.
A column label is datelike if
* it ends with ``'_at'``,
* it ends with ``'_time'``,
* it begins with ``'timestamp'``,
* it is ``'modified'``, or
* it is ``'date'``.
precise_float : bool, default False
Set to enable usage of higher precision (strtod) function when
decoding string to double values. Default (False) is to use fast but
less precise builtin functionality.
date_unit : str, default None
The timestamp unit to detect if converting dates. The default behaviour
is to try and detect the correct precision, but if this is not desired
then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds,
milliseconds, microseconds or nanoseconds respectively.
encoding : str, default is 'utf-8'
The encoding to use to decode py3 bytes.
encoding_errors : str, optional, default "strict"
How encoding errors are treated. `List of possible values
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
.. versionadded:: 1.3.0
lines : bool, default False
Read the file as a json object per line.
chunksize : int, optional
Return JsonReader object for iteration.
See the `line-delimited json docs
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#line-delimited-json>`_
for more information on ``chunksize``.
This can only be passed if `lines=True`.
If this is None, the file will be read into memory all at once.
{decompression_options}
.. versionchanged:: 1.4.0 Zstandard support.
nrows : int, optional
The number of lines from the line-delimited jsonfile that has to be read.
This can only be passed if `lines=True`.
If this is None, all the rows will be returned.
{storage_options}
dtype_backend : {{'numpy_nullable', 'pyarrow'}}
Back-end data type applied to the resultant :class:`DataFrame`
(still experimental). If not specified, the default behavior
is to not use nullable data types. If specified, the behavior
is as follows:
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
* ``"pyarrow"``: returns pyarrow-backed nullable
:class:`ArrowDtype` :class:`DataFrame`
.. versionadded:: 2.0
engine : {{"ujson", "pyarrow"}}, default "ujson"
Parser engine to use. The ``"pyarrow"`` engine is only available when
``lines=True``.
.. versionadded:: 2.0
Returns
-------
Series, DataFrame, or pandas.api.typing.JsonReader
A JsonReader is returned when ``chunksize`` is not ``0`` or ``None``.
Otherwise, the type returned depends on the value of ``typ``.
See Also
--------
DataFrame.to_json : Convert a DataFrame to a JSON string.
Series.to_json : Convert a Series to a JSON string.
json_normalize : Normalize semi-structured JSON data into a flat table.
Notes
-----
Specific to ``orient='table'``, if a :class:`DataFrame` with a literal
:class:`Index` name of `index` gets written with :func:`to_json`, the
subsequent read operation will incorrectly set the :class:`Index` name to
``None``. This is because `index` is also used by :func:`DataFrame.to_json`
to denote a missing :class:`Index` name, and the subsequent
:func:`read_json` operation cannot distinguish between the two. The same
limitation is encountered with a :class:`MultiIndex` and any names
beginning with ``'level_'``.
Examples
--------
>>> from io import StringIO
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
Encoding/decoding a Dataframe using ``'split'`` formatted JSON:
>>> df.to_json(orient='split')
'\
{{\
"columns":["col 1","col 2"],\
"index":["row 1","row 2"],\
"data":[["a","b"],["c","d"]]\
}}\
'
>>> pd.read_json(StringIO(_), orient='split') # noqa: F821
col 1 col 2
row 1 a b
row 2 c d
Encoding/decoding a Dataframe using ``'index'`` formatted JSON:
>>> df.to_json(orient='index')
'{{"row 1":{{"col 1":"a","col 2":"b"}},"row 2":{{"col 1":"c","col 2":"d"}}}}'
>>> pd.read_json(StringIO(_), orient='index') # noqa: F821
col 1 col 2
row 1 a b
row 2 c d
Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
Note that index labels are not preserved with this encoding.
>>> df.to_json(orient='records')
'[{{"col 1":"a","col 2":"b"}},{{"col 1":"c","col 2":"d"}}]'
>>> pd.read_json(StringIO(_), orient='records') # noqa: F821
col 1 col 2
0 a b
1 c d
Encoding with Table Schema
>>> df.to_json(orient='table')
'\
{{"schema":{{"fields":[\
{{"name":"index","type":"string"}},\
{{"name":"col 1","type":"string"}},\
{{"name":"col 2","type":"string"}}],\
"primaryKey":["index"],\
"pandas_version":"1.4.0"}},\
"data":[\
{{"index":"row 1","col 1":"a","col 2":"b"}},\
{{"index":"row 2","col 1":"c","col 2":"d"}}]\
}}\
'
The following example uses ``dtype_backend="numpy_nullable"``
>>> data = '''{{"index": {{"0": 0, "1": 1}},
... "a": {{"0": 1, "1": null}},
... "b": {{"0": 2.5, "1": 4.5}},
... "c": {{"0": true, "1": false}},
... "d": {{"0": "a", "1": "b"}},
... "e": {{"0": 1577.2, "1": 1577.1}}}}'''
>>> pd.read_json(StringIO(data), dtype_backend="numpy_nullable")
index a b c d e
0 0 1 2.5 True a 1577.2
1 1 <NA> 4.5 False b 1577.1
"""
if orient == "table" and dtype:
raise ValueError("cannot pass both dtype and orient='table'")
if orient == "table" and convert_axes:
raise ValueError("cannot pass both convert_axes and orient='table'")
check_dtype_backend(dtype_backend)
if dtype is None and orient != "table":
# error: Incompatible types in assignment (expression has type "bool", variable
# has type "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float],
# Type[int], Type[complex], Type[bool], Type[object], Dict[Hashable,
# Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float],
# Type[int], Type[complex], Type[bool], Type[object]]], None]")
dtype = True # type: ignore[assignment]
if convert_axes is None and orient != "table":
convert_axes = True
json_reader = JsonReader(
path_or_buf,
orient=orient,
typ=typ,
dtype=dtype,
convert_axes=convert_axes,
convert_dates=convert_dates,
keep_default_dates=keep_default_dates,
precise_float=precise_float,
date_unit=date_unit,
encoding=encoding,
lines=lines,
chunksize=chunksize,
compression=compression,
nrows=nrows,
storage_options=storage_options,
encoding_errors=encoding_errors,
dtype_backend=dtype_backend,
engine=engine,
)
if chunksize:
return json_reader
else:
return json_reader.read()
class JsonReader(abc.Iterator, Generic[FrameSeriesStrT]):
"""
JsonReader provides an interface for reading in a JSON file.
If initialized with ``lines=True`` and ``chunksize``, can be iterated over
``chunksize`` lines at a time. Otherwise, calling ``read`` reads in the
whole document.
"""
def __init__(
self,
filepath_or_buffer,
orient,
typ: FrameSeriesStrT,
dtype,
convert_axes: bool | None,
convert_dates,
keep_default_dates: bool,
precise_float: bool,
date_unit,
encoding,
lines: bool,
chunksize: int | None,
compression: CompressionOptions,
nrows: int | None,
storage_options: StorageOptions | None = None,
encoding_errors: str | None = "strict",
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
engine: JSONEngine = "ujson",
) -> None:
self.orient = orient
self.typ = typ
self.dtype = dtype
self.convert_axes = convert_axes
self.convert_dates = convert_dates
self.keep_default_dates = keep_default_dates
self.precise_float = precise_float
self.date_unit = date_unit
self.encoding = encoding
self.engine = engine
self.compression = compression
self.storage_options = storage_options
self.lines = lines
self.chunksize = chunksize
self.nrows_seen = 0
self.nrows = nrows
self.encoding_errors = encoding_errors
self.handles: IOHandles[str] | None = None
self.dtype_backend = dtype_backend
if self.engine not in {"pyarrow", "ujson"}:
raise ValueError(
f"The engine type {self.engine} is currently not supported."
)
if self.chunksize is not None:
self.chunksize = validate_integer("chunksize", self.chunksize, 1)
if not self.lines:
raise ValueError("chunksize can only be passed if lines=True")
if self.engine == "pyarrow":
raise ValueError(
"currently pyarrow engine doesn't support chunksize parameter"
)
if self.nrows is not None:
self.nrows = validate_integer("nrows", self.nrows, 0)
if not self.lines:
raise ValueError("nrows can only be passed if lines=True")
if self.engine == "pyarrow":
if not self.lines:
raise ValueError(
"currently pyarrow engine only supports "
"the line-delimited JSON format"
)
self.data = filepath_or_buffer
elif self.engine == "ujson":
data = self._get_data_from_filepath(filepath_or_buffer)
# If self.chunksize, we prepare the data for the `__next__` method.
# Otherwise, we read it into memory for the `read` method.
if not (self.chunksize or self.nrows):
with self:
self.data = data.read()
else:
self.data = data
def _get_data_from_filepath(self, filepath_or_buffer):
"""
The function read_json accepts three input types:
1. filepath (string-like)
2. file-like object (e.g. open file object, StringIO)
"""
filepath_or_buffer = stringify_path(filepath_or_buffer)
try:
self.handles = get_handle(
filepath_or_buffer,
"r",
encoding=self.encoding,
compression=self.compression,
storage_options=self.storage_options,
errors=self.encoding_errors,
)
except OSError as err:
raise FileNotFoundError(
f"File {filepath_or_buffer} does not exist"
) from err
filepath_or_buffer = self.handles.handle
return filepath_or_buffer
def _combine_lines(self, lines) -> str:
"""
Combines a list of JSON objects into one JSON object.
"""
return (
f"[{','.join([line for line in (line.strip() for line in lines) if line])}]"
)
@overload
def read(self: JsonReader[Literal["frame"]]) -> DataFrame: ...
@overload
def read(self: JsonReader[Literal["series"]]) -> Series: ...
@overload
def read(self: JsonReader[Literal["frame", "series"]]) -> DataFrame | Series: ...
def read(self) -> DataFrame | Series:
"""
Read the whole JSON input into a pandas object.
"""
obj: DataFrame | Series
with self:
if self.engine == "pyarrow":
obj = self._read_pyarrow()
elif self.engine == "ujson":
obj = self._read_ujson()
return obj
def _read_pyarrow(self) -> DataFrame:
"""
Read JSON using the pyarrow engine.
"""
pyarrow_json = import_optional_dependency("pyarrow.json")
pa_table = pyarrow_json.read_json(self.data)
df = arrow_table_to_pandas(pa_table, dtype_backend=self.dtype_backend)
if isinstance(self.dtype, dict):
df = df.astype(self.dtype)
return df
def _read_ujson(self) -> DataFrame | Series:
"""
Read JSON using the ujson engine.
"""
obj: DataFrame | Series
if self.lines:
if self.chunksize:
obj = concat(self)
elif self.nrows:
lines = list(islice(self.data, self.nrows))
lines_json = self._combine_lines(lines)
obj = self._get_object_parser(lines_json)
else:
data = ensure_str(self.data)
data_lines = data.split("\n")
obj = self._get_object_parser(self._combine_lines(data_lines))
else:
obj = self._get_object_parser(self.data)
if self.dtype_backend is not lib.no_default:
return obj.convert_dtypes(
infer_objects=False, dtype_backend=self.dtype_backend
)
else:
return obj
def _get_object_parser(self, json: str) -> DataFrame | Series:
"""
Parses a json document into a pandas object.
"""
typ = self.typ
dtype = self.dtype
kwargs = {
"orient": self.orient,
"dtype": self.dtype,
"convert_axes": self.convert_axes,
"convert_dates": self.convert_dates,