|
| 1 | + |
| 2 | +/** |
| 3 | + * Ternary search is a divide-and-conquer algorithm to determine the position of |
| 4 | + * a specific value in a sorted array |
| 5 | + * |
| 6 | + */ |
| 7 | + |
| 8 | +public class TernarySearch { |
| 9 | + /** call function **/ |
| 10 | + public static int ternarySearch(int[] A, int value) { |
| 11 | + return ternarySearch(A, value, 0, A.length - 1); |
| 12 | + } |
| 13 | + |
| 14 | + /** TernarySearch function **/ |
| 15 | + public static int ternarySearch(int[] A, int value, int start, int end) { |
| 16 | + if (start > end) |
| 17 | + return -1; |
| 18 | + |
| 19 | + /** First boundary: add 1/3 of length to start **/ |
| 20 | + int mid1 = start + (end - start) / 3; |
| 21 | + /** Second boundary: add 2/3 of length to start **/ |
| 22 | + int mid2 = start + 2 * (end - start) / 3; |
| 23 | + |
| 24 | + if (A[mid1] == value) |
| 25 | + return mid1; |
| 26 | + else if (A[mid2] == value) |
| 27 | + return mid2; |
| 28 | + /** Search 1st third **/ |
| 29 | + else if (value < A[mid1]) |
| 30 | + return ternarySearch(A, value, start, mid1 - 1); |
| 31 | + /** Search 3rd third **/ |
| 32 | + else if (value > A[mid2]) |
| 33 | + return ternarySearch(A, value, mid2 + 1, end); |
| 34 | + /** Search middle third **/ |
| 35 | + else |
| 36 | + return ternarySearch(A, value, mid1, mid2); |
| 37 | + } |
| 38 | + |
| 39 | + /** Main method **/ |
| 40 | + public static void main(String[] args) { |
| 41 | + int arr[] = { 2, 5, 15, 24, 31, 47, 59, 61, 79, 97 }; |
| 42 | + int elementToBeSearched = 24; |
| 43 | + |
| 44 | + int result = ternarySearch(arr, elementToBeSearched); |
| 45 | + |
| 46 | + if (result == -1) |
| 47 | + System.out.println("\n" + elementToBeSearched + " element not found"); |
| 48 | + else |
| 49 | + System.out.println("\n" + elementToBeSearched + " element found at position " + result); |
| 50 | + |
| 51 | + } |
| 52 | +} |
0 commit comments