-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path188. Best Time to Buy and Sell Stock IV.c
79 lines (56 loc) · 1.85 KB
/
188. Best Time to Buy and Sell Stock IV.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*
188. Best Time to Buy and Sell Stock IV
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
*/
int _max(int a, int b) {
return a > b ? a : b;
}
int all_profits(int* prices, int pricesSize) {
int i, d, p;
p = 0;
for (i = 1; i < pricesSize; i ++) {
d = prices[i] - prices[i - 1];
p = d > 0 ? p + d : p; // get it as long as it is a profit!
}
return p;
}
int maxProfit(int k, int* prices, int pricesSize) {
int *b, *s, *buff, i, j, p;
if (pricesSize < 2) return 0;
if (k >= pricesSize / 2) return all_profits(prices, pricesSize);
buff = malloc((2 * k + 1) * sizeof(int));
//assert(buff);
b = &buff[0];
s = &buff[k];
for (i = 0; i < k; i ++) {
b[i] = 0x80000000; // min integer
s[i] = 0;
}
s[k] = 0;
for (i = 0; i < pricesSize; i ++) {
for (j = 0; j < k; j ++) {
// profit on buy is current buy or last sale minus today's price
b[j] = _max(b[j], s[j] - prices[i]);
// profit on sale is current sale or last buy plus today's price
s[j + 1] = _max(s[j + 1], b[j] + prices[i]);
}
}
p = s[k];
free(buff);
return p;
}
/*
Difficulty:Hard
*/