forked from TheAlgorithms/Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRSA.java
66 lines (53 loc) · 1.73 KB
/
RSA.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
package com.thealgorithms.ciphers;
import java.math.BigInteger;
import java.security.SecureRandom;
/**
* @author Nguyen Duy Tiep on 23-Oct-17.
*/
public class RSA {
private BigInteger modulus;
private BigInteger privateKey;
private BigInteger publicKey;
public RSA(int bits) {
generateKeys(bits);
}
/**
* @return encrypted message
*/
public synchronized String encrypt(String message) {
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
}
/**
* @return encrypted message as big integer
*/
public synchronized BigInteger encrypt(BigInteger message) {
return message.modPow(publicKey, modulus);
}
/**
* @return plain message
*/
public synchronized String decrypt(String encryptedMessage) {
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
}
/**
* @return plain message as big integer
*/
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
return encryptedMessage.modPow(privateKey, modulus);
}
/**
* Generate a new public and private key set.
*/
public final synchronized void generateKeys(int bits) {
SecureRandom r = new SecureRandom();
BigInteger p = new BigInteger(bits / 2, 100, r);
BigInteger q = new BigInteger(bits / 2, 100, r);
modulus = p.multiply(q);
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
publicKey = BigInteger.valueOf(3L);
while (m.gcd(publicKey).intValue() > 1) {
publicKey = publicKey.add(BigInteger.TWO);
}
privateKey = publicKey.modInverse(m);
}
}