@@ -107,7 +107,7 @@ Joining logic of the resulting axis
107
107
The ``join `` keyword specifies how to handle axis values that don't exist in the first
108
108
:class: `DataFrame `.
109
109
110
- ``join='outer' `` takes the union of all axis values
110
+ ``join='outer' `` takes the union of all axis values.
111
111
112
112
.. ipython :: python
113
113
@@ -130,7 +130,7 @@ The ``join`` keyword specifies how to handle axis values that don't exist in the
130
130
p.plot([df1, df4], result, labels = [" df1" , " df4" ], vertical = False );
131
131
plt.close(" all" );
132
132
133
- ``join='inner' `` takes the intersection of the axis values
133
+ ``join='inner' `` takes the intersection of the axis values.
134
134
135
135
.. ipython :: python
136
136
@@ -296,7 +296,7 @@ the index of the :class:`DataFrame` pieces:
296
296
297
297
result.index.levels
298
298
299
- ``levels `` argument allows specifying resulting levels associated with the ``keys ``
299
+ ``levels `` argument allows specifying resulting levels associated with the ``keys ``.
300
300
301
301
.. ipython :: python
302
302
@@ -322,7 +322,7 @@ Appending rows to a :class:`DataFrame`
322
322
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
323
323
324
324
If you have a :class: `Series ` that you want to append as a single row to a :class: `DataFrame `, you can convert the row into a
325
- :class: `DataFrame ` and use :func: `concat `
325
+ :class: `DataFrame ` and use :func: `concat `.
326
326
327
327
.. ipython :: python
328
328
@@ -355,7 +355,7 @@ Merge types
355
355
their indexes which must contain unique values.
356
356
* **many-to-one **: joining a unique index to one or
357
357
more columns in a different :class: `DataFrame `.
358
- * **many-to-many ** : joining columns on columns.
358
+ * **many-to-many **: joining columns on columns.
359
359
360
360
.. note ::
361
361
@@ -485,8 +485,9 @@ either the left or right tables, the values in the joined table will be
485
485
plt.close(" all" );
486
486
487
487
You can merge :class: `Series ` and a :class: `DataFrame ` with a :class: `MultiIndex ` if the names of
488
- the :class: `MultiIndex ` correspond to the columns from the :class: `DataFrame `. Transform
489
- the :class: `Series ` to a :class: `DataFrame ` using :meth: `Series.reset_index ` before merging
488
+ the :class: `MultiIndex ` correspond to the columns from the :class: `DataFrame `. You can also
489
+ transform the :class: `Series ` to a :class: `DataFrame ` using :meth: `Series.reset_index `
490
+ before merging:
490
491
491
492
.. ipython :: python
492
493
@@ -504,7 +505,7 @@ the :class:`Series` to a :class:`DataFrame` using :meth:`Series.reset_index` bef
504
505
pd.merge(df, ser.reset_index(), on = [" Let" , " Num" ])
505
506
506
507
507
- Performing an outer join with duplicate join keys in :class: `DataFrame `
508
+ Performing an outer join with duplicate join keys in :class: `DataFrame `:
508
509
509
510
.. ipython :: python
510
511
@@ -1082,7 +1083,7 @@ Stack the differences on rows.
1082
1083
1083
1084
df.compare(df2, align_axis = 0 )
1084
1085
1085
- Keep all original rows and columns with ``keep_shape=True ``
1086
+ Keep all original rows and columns with ``keep_shape=True ``.
1086
1087
1087
1088
.. ipython :: python
1088
1089
0 commit comments