|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @author Alex Singer and Robert Luo |
| 4 | + * @date October 2024 |
| 5 | + * @brief The definitions of the analytical solvers used in the AP flow and |
| 6 | + * their base class. |
| 7 | + */ |
| 8 | + |
| 9 | +#include "analytical_solver.h" |
| 10 | +#include <Eigen/src/SparseCore/SparseMatrix.h> |
| 11 | +#include <Eigen/SVD> |
| 12 | +#include <Eigen/Sparse> |
| 13 | +#include <Eigen/Eigenvalues> |
| 14 | +#include <Eigen/IterativeLinearSolvers> |
| 15 | +#include <cstddef> |
| 16 | +#include <cstdio> |
| 17 | +#include <memory> |
| 18 | +#include <utility> |
| 19 | +#include <vector> |
| 20 | +#include "partial_placement.h" |
| 21 | +#include "ap_netlist.h" |
| 22 | +#include "vpr_error.h" |
| 23 | +#include "vtr_assert.h" |
| 24 | +#include "vtr_vector.h" |
| 25 | + |
| 26 | +std::unique_ptr<AnalyticalSolver> make_analytical_solver(e_analytical_solver solver_type, |
| 27 | + const APNetlist& netlist) { |
| 28 | + // Based on the solver type passed in, build the solver. |
| 29 | + switch (solver_type) { |
| 30 | + case e_analytical_solver::QP_HYBRID: |
| 31 | + return std::make_unique<QPHybridSolver>(netlist); |
| 32 | + default: |
| 33 | + VPR_FATAL_ERROR(VPR_ERROR_AP, |
| 34 | + "Unrecognized analytical solver type"); |
| 35 | + break; |
| 36 | + } |
| 37 | + return nullptr; |
| 38 | +} |
| 39 | + |
| 40 | +AnalyticalSolver::AnalyticalSolver(const APNetlist& netlist) |
| 41 | + : netlist_(netlist), |
| 42 | + blk_id_to_row_id_(netlist.blocks().size(), APRowId::INVALID()), |
| 43 | + row_id_to_blk_id_(netlist.blocks().size(), APBlockId::INVALID()) { |
| 44 | + // Get the number of moveable blocks in the netlist and create a unique |
| 45 | + // row ID from [0, num_moveable_blocks) for each moveable block in the |
| 46 | + // netlist. |
| 47 | + num_moveable_blocks_ = 0; |
| 48 | + size_t current_row_id = 0; |
| 49 | + for (APBlockId blk_id : netlist.blocks()) { |
| 50 | + if (netlist.block_mobility(blk_id) != APBlockMobility::MOVEABLE) |
| 51 | + continue; |
| 52 | + APRowId new_row_id = APRowId(current_row_id); |
| 53 | + blk_id_to_row_id_[blk_id] = new_row_id; |
| 54 | + row_id_to_blk_id_[new_row_id] = blk_id; |
| 55 | + current_row_id++; |
| 56 | + num_moveable_blocks_++; |
| 57 | + } |
| 58 | +} |
| 59 | + |
| 60 | +void QPHybridSolver::init_linear_system() { |
| 61 | + // Count the number of star nodes that the netlist will have. |
| 62 | + size_t num_star_nodes = 0; |
| 63 | + for (APNetId net_id : netlist_.nets()) { |
| 64 | + if (netlist_.net_pins(net_id).size() > star_num_pins_threshold) |
| 65 | + num_star_nodes++; |
| 66 | + } |
| 67 | + |
| 68 | + // Initialize the linear system with zeros. |
| 69 | + size_t num_variables = num_moveable_blocks_ + num_star_nodes; |
| 70 | + A_sparse = Eigen::SparseMatrix<double>(num_variables, num_variables); |
| 71 | + b_x = Eigen::VectorXd::Zero(num_variables); |
| 72 | + b_y = Eigen::VectorXd::Zero(num_variables); |
| 73 | + |
| 74 | + // Create a list of triplets that will be used to create the sparse |
| 75 | + // coefficient matrix. This is the method recommended by Eigen to initialize |
| 76 | + // this matrix. |
| 77 | + std::vector<Eigen::Triplet<double>> tripletList; |
| 78 | + // Reserve enough space for the triplets. This is just to help with |
| 79 | + // performance. |
| 80 | + size_t num_nets = netlist_.nets().size(); |
| 81 | + tripletList.reserve(num_moveable_blocks_ * num_nets); |
| 82 | + |
| 83 | + // Lambda expression to add a connection to the linear system from the src |
| 84 | + // to the target with the given weight. The src_row_id may represent a star |
| 85 | + // node (so it does not represent an APBlock) or a moveable APBlock. The |
| 86 | + // target_blk_id may be a fixed or moveable block. |
| 87 | + auto add_connection_to_system = [&](size_t src_row_id, |
| 88 | + APBlockId target_blk_id, |
| 89 | + double weight) { |
| 90 | + // Verify that this is a valid row. |
| 91 | + VTR_ASSERT_DEBUG(src_row_id < A_sparse.rows()); |
| 92 | + // Verify that this is a valid block id. |
| 93 | + VTR_ASSERT_DEBUG(target_blk_id.is_valid()); |
| 94 | + // The src_row_id is always a moveable block (rows in the matrix always |
| 95 | + // coorespond to a moveable APBlock or a star node. |
| 96 | + if (netlist_.block_mobility(target_blk_id) == APBlockMobility::MOVEABLE) { |
| 97 | + // If the target is also moveable, update the coefficient matrix. |
| 98 | + size_t target_row_id = (size_t)blk_id_to_row_id_[target_blk_id]; |
| 99 | + VTR_ASSERT_DEBUG(target_row_id < A_sparse.rows()); |
| 100 | + tripletList.emplace_back(src_row_id, src_row_id, weight); |
| 101 | + tripletList.emplace_back(target_row_id, target_row_id, weight); |
| 102 | + tripletList.emplace_back(src_row_id, target_row_id, -weight); |
| 103 | + tripletList.emplace_back(target_row_id, src_row_id, -weight); |
| 104 | + } else { |
| 105 | + // If the target is fixed, update the coefficient matrix and the |
| 106 | + // constant vectors. |
| 107 | + tripletList.emplace_back(src_row_id, src_row_id, weight); |
| 108 | + VTR_ASSERT_DEBUG(netlist_.block_loc(target_blk_id).x >= 0); |
| 109 | + VTR_ASSERT_DEBUG(netlist_.block_loc(target_blk_id).y >= 0); |
| 110 | + // FIXME: These fixed block locations are aligned to the anchor of |
| 111 | + // the tiles they are in. This is not correct. A method |
| 112 | + // should be added to the netlist class or to a util file |
| 113 | + // which can get a more accurate position. |
| 114 | + double blk_loc_x = netlist_.block_loc(target_blk_id).x; |
| 115 | + double blk_loc_y = netlist_.block_loc(target_blk_id).y; |
| 116 | + b_x(src_row_id) += weight * blk_loc_x; |
| 117 | + b_y(src_row_id) += weight * blk_loc_y; |
| 118 | + } |
| 119 | + }; |
| 120 | + |
| 121 | + // Create the connections using a hybrid connection model of the star and |
| 122 | + // clique connnection models. |
| 123 | + size_t star_node_offset = 0; |
| 124 | + for (APNetId net_id : netlist_.nets()) { |
| 125 | + size_t num_pins = netlist_.net_pins(net_id).size(); |
| 126 | + VTR_ASSERT_DEBUG(num_pins > 1); |
| 127 | + if (num_pins > star_num_pins_threshold) { |
| 128 | + // Create a star node and connect each block in the net to the star |
| 129 | + // node. |
| 130 | + // Using the weight from FastPlace |
| 131 | + double w = static_cast<double>(num_pins) / static_cast<double>(num_pins - 1); |
| 132 | + size_t star_node_id = num_moveable_blocks_ + star_node_offset; |
| 133 | + for (APPinId pin_id : netlist_.net_pins(net_id)) { |
| 134 | + APBlockId blk_id = netlist_.pin_block(pin_id); |
| 135 | + add_connection_to_system(star_node_id, blk_id, w); |
| 136 | + } |
| 137 | + star_node_offset++; |
| 138 | + } else { |
| 139 | + // Create a clique connection where every block in a net connects |
| 140 | + // exactly once to every other block in the net. |
| 141 | + // Using the weight from FastPlace |
| 142 | + double w = 1.0 / static_cast<double>(num_pins - 1); |
| 143 | + for (size_t ipin_idx = 0; ipin_idx < num_pins; ipin_idx++) { |
| 144 | + APPinId first_pin_id = netlist_.net_pin(net_id, ipin_idx); |
| 145 | + APBlockId first_blk_id = netlist_.pin_block(first_pin_id); |
| 146 | + for (size_t jpin_idx = ipin_idx + 1; jpin_idx < num_pins; jpin_idx++) { |
| 147 | + APPinId second_pin_id = netlist_.net_pin(net_id, jpin_idx); |
| 148 | + APBlockId second_blk_id = netlist_.pin_block(second_pin_id); |
| 149 | + // Make sure that the first node is moveable. This makes |
| 150 | + // creating the connection easier. |
| 151 | + if (netlist_.block_mobility(first_blk_id) == APBlockMobility::FIXED) { |
| 152 | + // If both blocks are fixed, no connection needs to be |
| 153 | + // made; just continue. |
| 154 | + if (netlist_.block_mobility(second_blk_id) == APBlockMobility::FIXED) { |
| 155 | + continue; |
| 156 | + } |
| 157 | + // If the second block is moveable, swap the first and |
| 158 | + // second block so the first block is the moveable one. |
| 159 | + std::swap(first_blk_id, second_blk_id); |
| 160 | + } |
| 161 | + size_t first_row_id = (size_t)blk_id_to_row_id_[first_blk_id]; |
| 162 | + add_connection_to_system(first_row_id, second_blk_id, w); |
| 163 | + } |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + |
| 168 | + // Make sure that the number of star nodes created matches the number of |
| 169 | + // star nodes we pre-calculated we would have. |
| 170 | + VTR_ASSERT_SAFE(num_star_nodes == star_node_offset); |
| 171 | + |
| 172 | + // Populate the A_sparse matrix using the triplets. |
| 173 | + A_sparse.setFromTriplets(tripletList.begin(), tripletList.end()); |
| 174 | +} |
| 175 | + |
| 176 | +/** |
| 177 | + * @brief Helper method to update the linear system with anchors to the current |
| 178 | + * partial placement. |
| 179 | + * |
| 180 | + * For each moveable block (with row = i) in the netlist: |
| 181 | + * A[i][i] = A[i][i] + coeff_pseudo_anchor; |
| 182 | + * b[i] = b[i] + pos[block(i)] * coeff_pseudo_anchor; |
| 183 | + * Where coeff_pseudo_anchor grows with each iteration. |
| 184 | + * |
| 185 | + * This is basically a fast way of adding a connection between a moveable block |
| 186 | + * and a fixed block. |
| 187 | + */ |
| 188 | +static inline void update_linear_system_with_anchors( |
| 189 | + Eigen::SparseMatrix<double> &A_sparse_diff, |
| 190 | + Eigen::VectorXd &b_x_diff, |
| 191 | + Eigen::VectorXd &b_y_diff, |
| 192 | + PartialPlacement& p_placement, |
| 193 | + size_t num_moveable_blocks, |
| 194 | + vtr::vector<APRowId, APBlockId> row_id_to_blk_id, |
| 195 | + unsigned iteration) { |
| 196 | + // Anchor weights grow exponentially with iteration. |
| 197 | + double coeff_pseudo_anchor = 0.01 * std::exp((double)iteration/5); |
| 198 | + for (size_t row_id_idx = 0; row_id_idx < num_moveable_blocks; row_id_idx++) { |
| 199 | + APRowId row_id = APRowId(row_id_idx); |
| 200 | + APBlockId blk_id = row_id_to_blk_id[row_id]; |
| 201 | + double pseudo_w = coeff_pseudo_anchor; |
| 202 | + A_sparse_diff.coeffRef(row_id_idx, row_id_idx) += pseudo_w; |
| 203 | + b_x_diff(row_id_idx) += pseudo_w * p_placement.block_x_locs[blk_id]; |
| 204 | + b_y_diff(row_id_idx) += pseudo_w * p_placement.block_y_locs[blk_id]; |
| 205 | + } |
| 206 | +} |
| 207 | + |
| 208 | +void QPHybridSolver::solve(unsigned iteration, PartialPlacement &p_placement) { |
| 209 | + // Create a temporary linear system which will contain the original linear |
| 210 | + // system which may be updated to include the anchor points. |
| 211 | + Eigen::SparseMatrix<double> A_sparse_diff = Eigen::SparseMatrix<double>(A_sparse); |
| 212 | + Eigen::VectorXd b_x_diff = Eigen::VectorXd(b_x); |
| 213 | + Eigen::VectorXd b_y_diff = Eigen::VectorXd(b_y); |
| 214 | + // In the first iteration, the orginal linear system is used. |
| 215 | + // In any other iteration, use the moveable APBlocks current placement as |
| 216 | + // anchor-points (fixed block positions). |
| 217 | + if (iteration != 0) { |
| 218 | + update_linear_system_with_anchors(A_sparse_diff, b_x_diff, b_y_diff, |
| 219 | + p_placement, num_moveable_blocks_, |
| 220 | + row_id_to_blk_id_, iteration); |
| 221 | + } |
| 222 | + // Verify that the constant vectors are valid. |
| 223 | + VTR_ASSERT_DEBUG(!b_x_diff.hasNaN() && "b_x has NaN!"); |
| 224 | + VTR_ASSERT_DEBUG(!b_y_diff.hasNaN() && "b_y has NaN!"); |
| 225 | + |
| 226 | + // Set up the ConjugateGradient Solver using the coefficient matrix. |
| 227 | + // TODO: can change cg.tolerance to increase performance when needed |
| 228 | + // - This tolerance may need to be a function of the number of nets. |
| 229 | + // - Instead of normalizing the fixed blocks, the tolerance can be scaled |
| 230 | + // by the size of the device. |
| 231 | + Eigen::ConjugateGradient<Eigen::SparseMatrix<double>, Eigen::Lower|Eigen::Upper> cg; |
| 232 | + cg.compute(A_sparse_diff); |
| 233 | + VTR_ASSERT(cg.info() == Eigen::Success && "Conjugate Gradient failed at compute!"); |
| 234 | + // Use the solver to solve for x and y using the constant vectors |
| 235 | + // TODO: Use solve with guess to make this faster. Use the previous placement |
| 236 | + // as a guess. |
| 237 | + Eigen::VectorXd x = cg.solve(b_x_diff); |
| 238 | + VTR_ASSERT(cg.info() == Eigen::Success && "Conjugate Gradient failed at solving b_x!"); |
| 239 | + Eigen::VectorXd y = cg.solve(b_y_diff); |
| 240 | + VTR_ASSERT(cg.info() == Eigen::Success && "Conjugate Gradient failed at solving b_y!"); |
| 241 | + |
| 242 | + // Write the results back into the partial placement object. |
| 243 | + for (size_t row_id_idx = 0; row_id_idx < num_moveable_blocks_; row_id_idx++) { |
| 244 | + APRowId row_id = APRowId(row_id_idx); |
| 245 | + APBlockId blk_id = row_id_to_blk_id_[row_id]; |
| 246 | + p_placement.block_x_locs[blk_id] = x[row_id_idx]; |
| 247 | + p_placement.block_y_locs[blk_id] = y[row_id_idx]; |
| 248 | + } |
| 249 | +} |
| 250 | + |
0 commit comments