forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_asof.py
175 lines (134 loc) · 5.29 KB
/
test_asof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# coding=utf-8
import numpy as np
from pandas import (offsets, Series, notnull,
isnull, date_range, Timestamp)
import pandas.util.testing as tm
from .common import TestData
class TestSeriesAsof(TestData, tm.TestCase):
def test_basic(self):
# array or list or dates
N = 50
rng = date_range('1/1/1990', periods=N, freq='53s')
ts = Series(np.random.randn(N), index=rng)
ts[15:30] = np.nan
dates = date_range('1/1/1990', periods=N * 3, freq='25s')
result = ts.asof(dates)
self.assertTrue(notnull(result).all())
lb = ts.index[14]
ub = ts.index[30]
result = ts.asof(list(dates))
self.assertTrue(notnull(result).all())
lb = ts.index[14]
ub = ts.index[30]
mask = (result.index >= lb) & (result.index < ub)
rs = result[mask]
self.assertTrue((rs == ts[lb]).all())
val = result[result.index[result.index >= ub][0]]
self.assertEqual(ts[ub], val)
def test_scalar(self):
N = 30
rng = date_range('1/1/1990', periods=N, freq='53s')
ts = Series(np.arange(N), index=rng)
ts[5:10] = np.NaN
ts[15:20] = np.NaN
val1 = ts.asof(ts.index[7])
val2 = ts.asof(ts.index[19])
self.assertEqual(val1, ts[4])
self.assertEqual(val2, ts[14])
# accepts strings
val1 = ts.asof(str(ts.index[7]))
self.assertEqual(val1, ts[4])
# in there
result = ts.asof(ts.index[3])
self.assertEqual(result, ts[3])
# no as of value
d = ts.index[0] - offsets.BDay()
self.assertTrue(np.isnan(ts.asof(d)))
def test_with_nan(self):
# basic asof test
rng = date_range('1/1/2000', '1/2/2000', freq='4h')
s = Series(np.arange(len(rng)), index=rng)
r = s.resample('2h').mean()
result = r.asof(r.index)
expected = Series([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.],
index=date_range('1/1/2000', '1/2/2000', freq='2h'))
tm.assert_series_equal(result, expected)
r.iloc[3:5] = np.nan
result = r.asof(r.index)
expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.],
index=date_range('1/1/2000', '1/2/2000', freq='2h'))
tm.assert_series_equal(result, expected)
r.iloc[-3:] = np.nan
result = r.asof(r.index)
expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.],
index=date_range('1/1/2000', '1/2/2000', freq='2h'))
tm.assert_series_equal(result, expected)
def test_periodindex(self):
from pandas import period_range, PeriodIndex
# array or list or dates
N = 50
rng = period_range('1/1/1990', periods=N, freq='H')
ts = Series(np.random.randn(N), index=rng)
ts[15:30] = np.nan
dates = date_range('1/1/1990', periods=N * 3, freq='37min')
result = ts.asof(dates)
self.assertTrue(notnull(result).all())
lb = ts.index[14]
ub = ts.index[30]
result = ts.asof(list(dates))
self.assertTrue(notnull(result).all())
lb = ts.index[14]
ub = ts.index[30]
pix = PeriodIndex(result.index.values, freq='H')
mask = (pix >= lb) & (pix < ub)
rs = result[mask]
self.assertTrue((rs == ts[lb]).all())
ts[5:10] = np.nan
ts[15:20] = np.nan
val1 = ts.asof(ts.index[7])
val2 = ts.asof(ts.index[19])
self.assertEqual(val1, ts[4])
self.assertEqual(val2, ts[14])
# accepts strings
val1 = ts.asof(str(ts.index[7]))
self.assertEqual(val1, ts[4])
# in there
self.assertEqual(ts.asof(ts.index[3]), ts[3])
# no as of value
d = ts.index[0].to_timestamp() - offsets.BDay()
self.assertTrue(isnull(ts.asof(d)))
def test_errors(self):
s = Series([1, 2, 3],
index=[Timestamp('20130101'),
Timestamp('20130103'),
Timestamp('20130102')])
# non-monotonic
self.assertFalse(s.index.is_monotonic)
with self.assertRaises(ValueError):
s.asof(s.index[0])
# subset with Series
N = 10
rng = date_range('1/1/1990', periods=N, freq='53s')
s = Series(np.random.randn(N), index=rng)
with self.assertRaises(ValueError):
s.asof(s.index[0], subset='foo')
def test_all_nans(self):
# GH 15713
# series is all nans
result = Series([np.nan]).asof([0])
expected = Series([np.nan])
tm.assert_series_equal(result, expected)
# testing non-default indexes
N = 50
rng = date_range('1/1/1990', periods=N, freq='53s')
dates = date_range('1/1/1990', periods=N * 3, freq='25s')
result = Series(np.nan, index=rng).asof(dates)
expected = Series(np.nan, index=dates)
tm.assert_series_equal(result, expected)
# testing scalar input
date = date_range('1/1/1990', periods=N * 3, freq='25s')[0]
result = Series(np.nan, index=rng).asof(date)
assert isnull(result)
# test name is propagated
result = Series(np.nan, index=[1, 2, 3, 4], name='test').asof([4, 5])
self.assertEqual(result.name, 'test')