forked from pandas-dev/pandas-stubs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_typing.pyi
756 lines (702 loc) · 21.7 KB
/
_typing.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
from builtins import type as type_t
from collections.abc import (
Callable,
Hashable,
Iterator,
Mapping,
MutableSequence,
Sequence,
)
import datetime
from os import PathLike
from typing import (
Any,
Literal,
Protocol,
TypedDict,
TypeVar,
)
import numpy as np
from numpy import typing as npt
import pandas as pd
from pandas.core.arrays import ExtensionArray
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexes.base import Index
from pandas.core.series import Series
from typing_extensions import TypeAlias
from pandas._libs.interval import Interval
from pandas._libs.tslibs import (
Period,
Timedelta,
Timestamp,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
ExtensionDtype,
)
from pandas.io.formats.format import EngFormatter
ArrayLike: TypeAlias = ExtensionArray | np.ndarray
AnyArrayLike: TypeAlias = Index | Series | np.ndarray
PythonScalar: TypeAlias = str | bool | complex
DatetimeLikeScalar = TypeVar("DatetimeLikeScalar", Period, Timestamp, Timedelta)
PandasScalar: TypeAlias = bytes | datetime.date | datetime.datetime | datetime.timedelta
# Scalar: TypeAlias = PythonScalar | PandasScalar
DatetimeLike: TypeAlias = datetime.datetime | np.datetime64 | Timestamp
DateAndDatetimeLike: TypeAlias = datetime.date | DatetimeLike
DatetimeDictArg: TypeAlias = (
Sequence[int] | Sequence[float] | list[str] | tuple[Scalar, ...] | AnyArrayLike
)
DictConvertible: TypeAlias = FulldatetimeDict | DataFrame
class YearMonthDayDict(TypedDict, total=True):
year: DatetimeDictArg
month: DatetimeDictArg
day: DatetimeDictArg
class FulldatetimeDict(YearMonthDayDict, total=False):
hour: DatetimeDictArg
hours: DatetimeDictArg
minute: DatetimeDictArg
minutes: DatetimeDictArg
second: DatetimeDictArg
seconds: DatetimeDictArg
ms: DatetimeDictArg
us: DatetimeDictArg
ns: DatetimeDictArg
# dtypes
NpDtype: TypeAlias = str | np.dtype[np.generic] | type[str | complex | bool | object]
Dtype: TypeAlias = ExtensionDtype | NpDtype
DtypeArg: TypeAlias = Dtype | Mapping[Any, Dtype]
DtypeBackend: TypeAlias = Literal["pyarrow", "numpy_nullable"]
# NOTE: we want to catch all the possible dtypes from np.sctypeDict
# timedelta64
# M
# m8
# M8
# object_
# object0
# m
# datetime64
BooleanDtypeArg: TypeAlias = (
# Builtin bool type and its string alias
type[bool] # noqa: PYI030
| Literal["bool"]
# Pandas nullable boolean type and its string alias
| pd.BooleanDtype
| Literal["boolean"]
# Numpy bool type
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_
| type[np.bool_]
| Literal["?", "b1", "bool8", "bool_"]
# PyArrow boolean type and its string alias
| Literal["bool[pyarrow]", "boolean[pyarrow]"]
)
IntDtypeArg: TypeAlias = (
# Builtin integer type and its string alias
type[int] # noqa: PYI030
| Literal["int"]
# Pandas nullable integer types and their string aliases
| pd.Int8Dtype
| pd.Int16Dtype
| pd.Int32Dtype
| pd.Int64Dtype
| Literal["Int8", "Int16", "Int32", "Int64"]
# Numpy signed integer types and their string aliases
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.byte
| type[np.byte]
| Literal["b", "i1", "int8", "byte"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.short
| type[np.short]
| Literal["h", "i2", "int16", "short"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc
| type[np.intc]
| Literal["i", "i4", "int32", "intc"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int_
| type[np.int_]
| Literal["l", "i8", "int64", "int_", "long"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longlong
| type[np.longlong]
| Literal["q", "longlong"] # NOTE: int128 not assigned
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intp
| type[np.intp] # signed pointer (=`intptr_t`, platform dependent)
| Literal["p", "intp", "int0"]
# PyArrow integer types and their string aliases
| Literal["int8[pyarrow]", "int16[pyarrow]", "int32[pyarrow]", "int64[pyarrow]"]
)
UIntDtypeArg: TypeAlias = (
# Pandas nullable unsigned integer types and their string aliases
pd.UInt8Dtype # noqa: PYI030
| pd.UInt16Dtype
| pd.UInt32Dtype
| pd.UInt64Dtype
| Literal["UInt8", "UInt16", "UInt32", "UInt64"]
# Numpy unsigned integer types and their string aliases
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ubyte
| type[np.ubyte]
| Literal["B", "u1", "uint8", "ubyte"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ushort
| type[np.ushort]
| Literal["H", "u2", "uint16", "ushort"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc
| type[np.uintc]
| Literal["I", "u4", "uint32", "uintc"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint
| type[np.uint]
| Literal["L", "u8", "uint", "ulong", "uint64"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ulonglong
| type[np.ulonglong]
| Literal["Q", "ulonglong"] # NOTE: uint128 not assigned
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintp
| type[np.uintp] # unsigned pointer (=`uintptr_t`, platform dependent)
| Literal["P", "uintp", "uint0"]
# PyArrow unsigned integer types and their string aliases
| Literal["uint8[pyarrow]", "uint16[pyarrow]", "uint32[pyarrow]", "uint64[pyarrow]"]
)
FloatDtypeArg: TypeAlias = (
# Builtin float type and its string alias
type[float] # noqa: PYI030
| Literal["float"]
# Pandas nullable float types and their string aliases
| pd.Float32Dtype
| pd.Float64Dtype
| Literal["Float32", "Float64"]
# Numpy float types and their string aliases
# NOTE: Alias np.float16 only on Linux x86_64, use np.half instead
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.half
| type[np.half]
| Literal["e", "f2", "<f2", "float16", "half"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single
| type[np.single]
| Literal["f", "f4", "float32", "single"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.double
| type[np.double]
| Literal["d", "f8", "float64", "double", "float_"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longdouble
| type[np.longdouble]
| Literal["g", "f16", "float128", "longdouble", "longfloat"]
# PyArrow floating point types and their string aliases
| Literal[
"float[pyarrow]",
"double[pyarrow]",
"float16[pyarrow]",
"float32[pyarrow]",
"float64[pyarrow]",
]
)
ComplexDtypeArg: TypeAlias = (
# Builtin complex type and its string alias
type[complex] # noqa: PYI030
| Literal["complex"]
# Numpy complex types and their aliases
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.csingle
| type[np.csingle]
| Literal["F", "c8", "complex64", "csingle", "singlecomplex"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cdouble
| type[np.cdouble]
| Literal["D", "c16", "complex128", "cdouble", "cfloat", "complex_"]
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.clongdouble
# NOTE: Alias np.complex256 only on Linux x86_64, use np.clongdouble instead
| type[np.clongdouble]
| Literal[
"G",
"c32",
"complex256",
"clongdouble",
"clongfloat",
"longcomplex",
]
)
# Refer to https://numpy.org/doc/stable/reference/arrays.datetime.html#datetime-units
TimedeltaDtypeArg: TypeAlias = Literal[
"timedelta64[Y]",
"timedelta64[M]",
"timedelta64[W]",
"timedelta64[D]",
"timedelta64[h]",
"timedelta64[m]",
"timedelta64[s]",
"timedelta64[ms]",
"timedelta64[us]",
"timedelta64[μs]",
"timedelta64[ns]",
"timedelta64[ps]",
"timedelta64[fs]",
"timedelta64[as]",
# numpy type codes
"m8[Y]",
"m8[M]",
"m8[W]",
"m8[D]",
"m8[h]",
"m8[m]",
"m8[s]",
"m8[ms]",
"m8[us]",
"m8[μs]",
"m8[ns]",
"m8[ps]",
"m8[fs]",
"m8[as]",
# little endian
"<m8[Y]",
"<m8[M]",
"<m8[W]",
"<m8[D]",
"<m8[h]",
"<m8[m]",
"<m8[s]",
"<m8[ms]",
"<m8[us]",
"<m8[μs]",
"<m8[ns]",
"<m8[ps]",
"<m8[fs]",
"<m8[as]",
# PyArrow duration type and its string alias
"duration[s][pyarrow]",
"duration[ms][pyarrow]",
"duration[us][pyarrow]",
"duration[ns][pyarrow]",
]
TimestampDtypeArg: TypeAlias = Literal[
"datetime64[Y]",
"datetime64[M]",
"datetime64[W]",
"datetime64[D]",
"datetime64[h]",
"datetime64[m]",
"datetime64[s]",
"datetime64[ms]",
"datetime64[us]",
"datetime64[μs]",
"datetime64[ns]",
"datetime64[ps]",
"datetime64[fs]",
"datetime64[as]",
# numpy type codes
"M8[Y]",
"M8[M]",
"M8[W]",
"M8[D]",
"M8[h]",
"M8[m]",
"M8[s]",
"M8[ms]",
"M8[us]",
"M8[μs]",
"M8[ns]",
"M8[ps]",
"M8[fs]",
"M8[as]",
# little endian
"<M8[Y]",
"<M8[M]",
"<M8[W]",
"<M8[D]",
"<M8[h]",
"<M8[m]",
"<M8[s]",
"<M8[ms]",
"<M8[us]",
"<M8[μs]",
"<M8[ns]",
"<M8[ps]",
"<M8[fs]",
"<M8[as]",
# PyArrow timestamp type and its string alias
"date32[pyarrow]",
"date64[pyarrow]",
"timestamp[s][pyarrow]",
"timestamp[ms][pyarrow]",
"timestamp[us][pyarrow]",
"timestamp[ns][pyarrow]",
]
StrDtypeArg: TypeAlias = (
# Builtin str type and its string alias
type[str] # noqa: PYI030
| Literal["str"]
# Pandas nullable string type and its string alias
| pd.StringDtype
| Literal["string"]
# Numpy string type and its string alias
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.str_
| type[np.str_]
| Literal["U", "str_", "str0", "unicode", "unicode_"]
# PyArrow string type and its string alias
| Literal["string[pyarrow]"]
)
BytesDtypeArg: TypeAlias = (
# Builtin bytes type and its string alias
type[bytes] # noqa: PYI030
| Literal["bytes"]
# Numpy bytes type and its string alias
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bytes_
| type[np.bytes_]
| Literal["S", "a", "bytes_", "bytes0", "string_"]
# PyArrow binary type and its string alias
| Literal["binary[pyarrow]"]
)
CategoryDtypeArg: TypeAlias = CategoricalDtype | Literal["category"]
ObjectDtypeArg: TypeAlias = (
# Builtin object type and its string alias
type[object] # noqa: PYI030
| Literal["object"]
# Numpy object type and its string alias
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.object_
| type[np.object_]
| Literal["O"] # NOTE: "object_" not assigned
)
VoidDtypeArg: TypeAlias = (
# Numpy void type and its string alias
# https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.void
type[np.void]
| Literal["V", "void", "void0"]
)
# DtypeArg specifies all allowable dtypes in a functions its dtype argument
DtypeObj: TypeAlias = np.dtype[np.generic] | ExtensionDtype
AstypeArg: TypeAlias = (
BooleanDtypeArg
| IntDtypeArg
| UIntDtypeArg
| StrDtypeArg
| BytesDtypeArg
| FloatDtypeArg
| ComplexDtypeArg
| TimedeltaDtypeArg
| TimestampDtypeArg
| CategoryDtypeArg
| ObjectDtypeArg
| VoidDtypeArg
| DtypeObj
)
# filenames and file-like-objects
AnyStr_cov = TypeVar("AnyStr_cov", str, bytes, covariant=True)
AnyStr_con = TypeVar("AnyStr_con", str, bytes, contravariant=True)
class BaseBuffer(Protocol):
@property
def mode(self) -> str: ...
def seek(self, __offset: int, __whence: int = ...) -> int: ...
def seekable(self) -> bool: ...
def tell(self) -> int: ...
class ReadBuffer(BaseBuffer, Protocol[AnyStr_cov]):
def read(self, __n: int = ...) -> AnyStr_cov: ...
class WriteBuffer(BaseBuffer, Protocol[AnyStr_con]):
def write(self, __b: AnyStr_con) -> Any: ...
def flush(self) -> Any: ...
class ReadPickleBuffer(ReadBuffer[bytes], Protocol):
def readline(self) -> bytes: ...
class ReadCsvBuffer(ReadBuffer[AnyStr_cov], Protocol[AnyStr_cov]):
def __iter__(self) -> Iterator[AnyStr_cov]: ...
def fileno(self) -> int: ...
def readline(self) -> AnyStr_cov: ...
@property
def closed(self) -> bool: ...
class WriteExcelBuffer(WriteBuffer[bytes], Protocol):
def truncate(self, size: int | None = ...) -> int: ...
FilePath: TypeAlias = str | PathLike[str]
IndexLabel: TypeAlias = Hashable | Sequence[Hashable]
Label: TypeAlias = Hashable | None
Level: TypeAlias = Hashable | int
Suffixes: TypeAlias = tuple[str | None, str | None]
Ordered: TypeAlias = bool | None
JSONSerializable: TypeAlias = PythonScalar | list | dict
Axes: TypeAlias = AnyArrayLike | list | dict | range | tuple
Renamer: TypeAlias = Mapping[Any, Label] | Callable[[Any], Label]
T = TypeVar("T")
FuncType: TypeAlias = Callable[..., Any]
F = TypeVar("F", bound=FuncType)
HashableT = TypeVar("HashableT", bound=Hashable)
HashableT1 = TypeVar("HashableT1", bound=Hashable)
HashableT2 = TypeVar("HashableT2", bound=Hashable)
HashableT3 = TypeVar("HashableT3", bound=Hashable)
HashableT4 = TypeVar("HashableT4", bound=Hashable)
HashableT5 = TypeVar("HashableT5", bound=Hashable)
AggFuncTypeBase: TypeAlias = Callable | str | np.ufunc
AggFuncTypeDictSeries: TypeAlias = Mapping[HashableT, AggFuncTypeBase]
AggFuncTypeDictFrame: TypeAlias = Mapping[
HashableT, AggFuncTypeBase | list[AggFuncTypeBase]
]
AggFuncTypeSeriesToFrame: TypeAlias = list[AggFuncTypeBase] | AggFuncTypeDictSeries
AggFuncTypeFrame: TypeAlias = (
AggFuncTypeBase | list[AggFuncTypeBase] | AggFuncTypeDictFrame
)
num: TypeAlias = complex
AxisIndex: TypeAlias = Literal["index", 0]
AxisColumn: TypeAlias = Literal["columns", 1]
Axis: TypeAlias = AxisIndex | AxisColumn
DtypeNp = TypeVar("DtypeNp", bound=np.dtype[np.generic])
KeysArgType: TypeAlias = Any
ListLike = TypeVar("ListLike", Sequence, np.ndarray, Series, Index)
ListLikeExceptSeriesAndStr = TypeVar(
"ListLikeExceptSeriesAndStr", MutableSequence, np.ndarray, tuple, Index
)
ListLikeU: TypeAlias = Sequence | np.ndarray | Series | Index
ListLikeHashable: TypeAlias = (
MutableSequence[HashableT] | np.ndarray | tuple[HashableT, ...] | range
)
StrLike: TypeAlias = str | np.str_
IndexIterScalar: TypeAlias = (
str
| bytes
| datetime.date
| datetime.datetime
| datetime.timedelta
| np.datetime64
| np.timedelta64
| bool
| int
| float
| Timestamp
| Timedelta
)
Scalar: TypeAlias = IndexIterScalar | complex
ScalarT = TypeVar("ScalarT", bound=Scalar)
# Refine the definitions below in 3.9 to use the specialized type.
np_ndarray_int64: TypeAlias = npt.NDArray[np.int64]
np_ndarray_int: TypeAlias = npt.NDArray[np.signedinteger]
np_ndarray_anyint: TypeAlias = npt.NDArray[np.integer]
np_ndarray_bool: TypeAlias = npt.NDArray[np.bool_]
np_ndarray_str: TypeAlias = npt.NDArray[np.str_]
IndexType: TypeAlias = slice | np_ndarray_anyint | Index | list[int] | Series[int]
MaskType: TypeAlias = Series[bool] | np_ndarray_bool | list[bool]
UsecolsArgType: TypeAlias = (
MutableSequence[str]
| tuple[str, ...]
| Sequence[int]
| Series
| Index
| np.ndarray
| Callable[[HashableT], bool]
| None
)
# Scratch types for generics
S1 = TypeVar(
"S1",
bound=str
| bytes
| datetime.date
| datetime.time
| bool
| int
| float
| complex
| Dtype
| Timestamp
| Timedelta
| Period
| Interval[int]
| Interval[float]
| Interval[Timestamp]
| Interval[Timedelta]
| CategoricalDtype,
)
T1 = TypeVar(
"T1", str, int, np.int64, np.uint64, np.float64, float, np.dtype[np.generic]
)
T2 = TypeVar("T2", str, int)
IndexingInt: TypeAlias = (
int | np.int_ | np.integer | np.unsignedinteger | np.signedinteger | np.int8
)
TimestampConvertibleTypes: TypeAlias = (
Timestamp
| datetime.datetime
| datetime.date
| np.datetime64
| np.int64
| float
| str
)
TimedeltaConvertibleTypes: TypeAlias = (
Timedelta | datetime.timedelta | np.timedelta64 | np.int64 | float | str
)
# NDFrameT is stricter and ensures that the same subclass of NDFrame always is
# used. E.g. `def func(a: NDFrameT) -> NDFrameT: ...` means that if a
# Series is passed into a function, a Series is always returned and if a DataFrame is
# passed in, a DataFrame is always returned.
NDFrameT = TypeVar("NDFrameT", bound=NDFrame)
IndexT = TypeVar("IndexT", bound=Index)
# Interval closed type
IntervalT = TypeVar("IntervalT", bound=Interval)
IntervalClosedType: TypeAlias = Literal["left", "right", "both", "neither"]
TakeIndexer: TypeAlias = Sequence[int] | Sequence[np.integer] | npt.NDArray[np.integer]
IgnoreRaiseCoerce: TypeAlias = Literal["ignore", "raise", "coerce"]
# Shared by functions such as drop and astype
IgnoreRaise: TypeAlias = Literal["ignore", "raise"]
# for arbitrary kwargs passed during reading/writing files
StorageOptions: TypeAlias = dict[str, Any] | None
# compression keywords and compression
CompressionDict: TypeAlias = dict[str, Any]
CompressionOptions: TypeAlias = (
None | Literal["infer", "gzip", "bz2", "zip", "xz", "zstd"] | CompressionDict
)
FormattersType: TypeAlias = (
list[Callable] | tuple[Callable, ...] | Mapping[str | int, Callable]
)
FloatFormatType: TypeAlias = str | Callable | EngFormatter
# converters
ConvertersArg: TypeAlias = dict[Hashable, Callable[[Dtype], Dtype]]
# parse_dates
ParseDatesArg: TypeAlias = (
bool | list[Hashable] | list[list[Hashable]] | dict[Hashable, list[Hashable]]
)
# read_xml parsers
XMLParsers: TypeAlias = Literal["lxml", "etree"]
# Any plain Python or numpy function
Function: TypeAlias = np.ufunc | Callable[..., Any]
# Use a distinct HashableT in shared types to avoid conflicts with
# shared HashableT and HashableT#. This one can be used if the identical
# type is need in a function that uses GroupByObjectNonScalar
_HashableTa = TypeVar("_HashableTa", bound=Hashable)
ByT = TypeVar(
"ByT",
bound=str
| bytes
| datetime.date
| datetime.datetime
| datetime.timedelta
| np.datetime64
| np.timedelta64
| bool
| int
| float
| complex
| Timestamp
| Timedelta
| Scalar
| Period
| Interval[int]
| Interval[float]
| Interval[Timestamp]
| Interval[Timedelta]
| tuple,
)
# Use a distinct SeriesByT when using groupby with Series of known dtype.
# Essentially, an intersection between Series S1 TypeVar, and ByT TypeVar
SeriesByT = TypeVar(
"SeriesByT",
bound=str
| bytes
| datetime.date
| bool
| int
| float
| complex
| Timestamp
| Timedelta
| Period
| Interval[int]
| Interval[float]
| Interval[Timestamp]
| Interval[Timedelta],
)
GroupByObjectNonScalar: TypeAlias = (
tuple
| list[_HashableTa]
| Function
| list[Function]
| list[Series]
| np.ndarray
| list[np.ndarray]
| Mapping[Label, Any]
| list[Mapping[Label, Any]]
| list[Index]
| Grouper
| list[Grouper]
)
GroupByObject: TypeAlias = Scalar | Index | GroupByObjectNonScalar | Series
StataDateFormat: TypeAlias = Literal[
"tc",
"%tc",
"td",
"%td",
"tw",
"%tw",
"tm",
"%tm",
"tq",
"%tq",
"th",
"%th",
"ty",
"%ty",
]
FillnaOptions: TypeAlias = Literal["backfill", "bfill", "ffill", "pad"]
InterpolateOptions: TypeAlias = Literal[
"linear",
"time",
"index",
"pad",
"nearest",
"zero",
"slinear",
"quadratic",
"cubic",
"barycentric",
"polynomial",
"krogh",
"piecewise_polynomial",
"spline",
"pchip",
"akima",
"cubicspline",
"from_derivatives",
]
ReplaceMethod: TypeAlias = Literal["pad", "ffill", "bfill"]
SortKind: TypeAlias = Literal["quicksort", "mergesort", "heapsort", "stable"]
NaPosition: TypeAlias = Literal["first", "last"]
JoinHow: TypeAlias = Literal["left", "right", "outer", "inner"]
MergeHow: TypeAlias = JoinHow | Literal["cross"]
JsonFrameOrient: TypeAlias = Literal[
"split", "records", "index", "columns", "values", "table"
]
JsonSeriesOrient: TypeAlias = Literal["split", "records", "index", "table"]
TimestampConvention: TypeAlias = Literal["start", "end", "s", "e"]
CSVEngine: TypeAlias = Literal["c", "python", "pyarrow", "python-fwf"]
CSVQuoting: TypeAlias = Literal[0, 1, 2, 3]
HDFCompLib: TypeAlias = Literal["zlib", "lzo", "bzip2", "blosc"]
ParquetEngine: TypeAlias = Literal["auto", "pyarrow", "fastparquet"]
FileWriteMode: TypeAlias = Literal[
"a", "w", "x", "at", "wt", "xt", "ab", "wb", "xb", "w+", "w+b", "a+", "a+b"
]
ColspaceArgType: TypeAlias = (
str | int | Sequence[int | str] | Mapping[Hashable, str | int]
)
# Windowing rank methods
WindowingRankType: TypeAlias = Literal["average", "min", "max"]
WindowingEngine: TypeAlias = Literal["cython", "numba"] | None
class _WindowingNumbaKwargs(TypedDict, total=False):
nopython: bool
nogil: bool
parallel: bool
WindowingEngineKwargs: TypeAlias = _WindowingNumbaKwargs | None
QuantileInterpolation: TypeAlias = Literal[
"linear", "lower", "higher", "midpoint", "nearest"
]
class StyleExportDict(TypedDict, total=False):
apply: Any
table_attributes: Any
table_styles: Any
hide_index: bool
hide_columns: bool
hide_index_names: bool
hide_column_names: bool
css: dict[str, str | int]
CalculationMethod: TypeAlias = Literal["single", "table"]
ValidationOptions: TypeAlias = Literal[
"one_to_one",
"1:1",
"one_to_many",
"1:m",
"many_to_one",
"m:1",
"many_to_many",
"m:m",
]
RandomState: TypeAlias = (
int
| ArrayLike
| np.random.Generator
| np.random.BitGenerator
| np.random.RandomState
)
__all__ = ["npt", "type_t"]