Suppose you want to load all data from an existing BigQuery table
test_dataset.test_table
into a DataFrame using the
:func:`~pandas_gbq.read_gbq` function.
# Insert your BigQuery Project ID Here
# Can be found in the Google web console
projectid = "xxxxxxxx"
data_frame = read_gbq('SELECT * FROM test_dataset.test_table', projectid)
You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows:
data_frame = read_gbq('SELECT * FROM test_dataset.test_table',
index_col='index_column_name',
col_order=['col1', 'col2', 'col3'], projectid)
You can specify the query config as parameter to use additional options of your job. For more information about query configuration parameters see here.
configuration = {
'query': {
"useQueryCache": False
}
}
data_frame = read_gbq('SELECT * FROM test_dataset.test_table',
configuration=configuration, projectid)
Note
You can find your project id in the Google developers console.
Note
The dialect
argument can be used to indicate whether to use BigQuery's 'legacy'
SQL
or BigQuery's 'standard'
SQL (beta). The default value is 'legacy'
. For more information
on BigQuery's standard SQL, see BigQuery SQL Reference