forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperiod.py
107 lines (80 loc) · 2.84 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
Period benchmarks with non-tslibs dependencies. See
benchmarks.tslibs.period for benchmarks that rely only on tslibs.
"""
from pandas import (
DataFrame,
Period,
PeriodIndex,
Series,
date_range,
period_range,
)
from pandas.tseries.frequencies import to_offset
class PeriodIndexConstructor:
params = [["D"], [True, False]]
param_names = ["freq", "is_offset"]
def setup(self, freq, is_offset):
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
self.freq = to_offset(freq)
else:
self.freq = freq
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq, is_offset):
PeriodIndex(self.rng2, freq=freq)
def time_from_ints(self, freq, is_offset):
PeriodIndex(self.ints, freq=freq)
def time_from_ints_daily(self, freq, is_offset):
PeriodIndex(self.daily_ints, freq=freq)
class DataFramePeriodColumn:
def setup(self):
self.rng = period_range(start="1/1/1990", freq="s", periods=20000)
self.df = DataFrame(index=range(len(self.rng)))
def time_setitem_period_column(self):
self.df["col"] = self.rng
def time_set_index(self):
# GH#21582 limited by comparisons of Period objects
self.df["col2"] = self.rng
self.df.set_index("col2", append=True)
class Algorithms:
params = ["index", "series"]
param_names = ["typ"]
def setup(self, typ):
data = [
Period("2011-01", freq="M"),
Period("2011-02", freq="M"),
Period("2011-03", freq="M"),
Period("2011-04", freq="M"),
]
if typ == "index":
self.vector = PeriodIndex(data * 1000, freq="M")
elif typ == "series":
self.vector = Series(data * 1000)
def time_drop_duplicates(self, typ):
self.vector.drop_duplicates()
def time_value_counts(self, typ):
self.vector.value_counts()
class Indexing:
def setup(self):
self.index = period_range(start="1985", periods=1000, freq="D")
self.series = Series(range(1000), index=self.index)
self.period = self.index[500]
def time_get_loc(self):
self.index.get_loc(self.period)
def time_shallow_copy(self):
self.index._view()
def time_series_loc(self):
self.series.loc[self.period]
def time_align(self):
DataFrame({"a": self.series, "b": self.series[:500]})
def time_intersection(self):
self.index[:750].intersection(self.index[250:])
def time_unique(self):
self.index.unique()