forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverter.py
1130 lines (951 loc) · 36 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import contextlib
import datetime as pydt
from datetime import (
datetime,
timedelta,
tzinfo,
)
import functools
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import warnings
import matplotlib.dates as mdates
from matplotlib.ticker import (
AutoLocator,
Formatter,
Locator,
)
from matplotlib.transforms import nonsingular
import matplotlib.units as munits
import numpy as np
from pandas._libs import lib
from pandas._libs.tslibs import (
Timestamp,
to_offset,
)
from pandas._libs.tslibs.dtypes import (
FreqGroup,
periods_per_day,
)
from pandas._typing import (
F,
npt,
)
from pandas.core.dtypes.common import (
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
is_nested_list_like,
)
from pandas import (
Index,
Series,
get_option,
)
import pandas.core.common as com
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import (
Period,
PeriodIndex,
period_range,
)
import pandas.core.tools.datetimes as tools
if TYPE_CHECKING:
from collections.abc import Generator
from pandas._libs.tslibs.offsets import BaseOffset
_mpl_units = {} # Cache for units overwritten by us
def get_pairs():
pairs = [
(Timestamp, DatetimeConverter),
(Period, PeriodConverter),
(pydt.datetime, DatetimeConverter),
(pydt.date, DatetimeConverter),
(pydt.time, TimeConverter),
(np.datetime64, DatetimeConverter),
]
return pairs
def register_pandas_matplotlib_converters(func: F) -> F:
"""
Decorator applying pandas_converters.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
with pandas_converters():
return func(*args, **kwargs)
return cast(F, wrapper)
@contextlib.contextmanager
def pandas_converters() -> Generator[None, None, None]:
"""
Context manager registering pandas' converters for a plot.
See Also
--------
register_pandas_matplotlib_converters : Decorator that applies this.
"""
value = get_option("plotting.matplotlib.register_converters")
if value:
# register for True or "auto"
register()
try:
yield
finally:
if value == "auto":
# only deregister for "auto"
deregister()
def register() -> None:
pairs = get_pairs()
for type_, cls in pairs:
# Cache previous converter if present
if type_ in munits.registry and not isinstance(munits.registry[type_], cls):
previous = munits.registry[type_]
_mpl_units[type_] = previous
# Replace with pandas converter
munits.registry[type_] = cls()
def deregister() -> None:
# Renamed in pandas.plotting.__init__
for type_, cls in get_pairs():
# We use type to catch our classes directly, no inheritance
if type(munits.registry.get(type_)) is cls:
munits.registry.pop(type_)
# restore the old keys
for unit, formatter in _mpl_units.items():
if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}:
# make it idempotent by excluding ours.
munits.registry[unit] = formatter
def _to_ordinalf(tm: pydt.time) -> float:
tot_sec = tm.hour * 3600 + tm.minute * 60 + tm.second + tm.microsecond / 10**6
return tot_sec
def time2num(d):
if isinstance(d, str):
parsed = Timestamp(d)
return _to_ordinalf(parsed.time())
if isinstance(d, pydt.time):
return _to_ordinalf(d)
return d
class TimeConverter(munits.ConversionInterface):
@staticmethod
def convert(value, unit, axis):
valid_types = (str, pydt.time)
if isinstance(value, valid_types) or is_integer(value) or is_float(value):
return time2num(value)
if isinstance(value, Index):
return value.map(time2num)
if isinstance(value, (list, tuple, np.ndarray, Index)):
return [time2num(x) for x in value]
return value
@staticmethod
def axisinfo(unit, axis) -> munits.AxisInfo | None:
if unit != "time":
return None
majloc = AutoLocator()
majfmt = TimeFormatter(majloc)
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label="time")
@staticmethod
def default_units(x, axis) -> str:
return "time"
# time formatter
class TimeFormatter(Formatter):
def __init__(self, locs) -> None:
self.locs = locs
def __call__(self, x, pos: int = 0) -> str:
"""
Return the time of day as a formatted string.
Parameters
----------
x : float
The time of day specified as seconds since 00:00 (midnight),
with up to microsecond precision.
pos
Unused
Returns
-------
str
A string in HH:MM:SS.mmmuuu format. Microseconds,
milliseconds and seconds are only displayed if non-zero.
"""
fmt = "%H:%M:%S.%f"
s = int(x)
msus = round((x - s) * 10**6)
ms = msus // 1000
us = msus % 1000
m, s = divmod(s, 60)
h, m = divmod(m, 60)
_, h = divmod(h, 24)
if us != 0:
return pydt.time(h, m, s, msus).strftime(fmt)
elif ms != 0:
return pydt.time(h, m, s, msus).strftime(fmt)[:-3]
elif s != 0:
return pydt.time(h, m, s).strftime("%H:%M:%S")
return pydt.time(h, m).strftime("%H:%M")
# Period Conversion
class PeriodConverter(mdates.DateConverter):
@staticmethod
def convert(values, units, axis):
if is_nested_list_like(values):
values = [PeriodConverter._convert_1d(v, units, axis) for v in values]
else:
values = PeriodConverter._convert_1d(values, units, axis)
return values
@staticmethod
def _convert_1d(values, units, axis):
if not hasattr(axis, "freq"):
raise TypeError("Axis must have `freq` set to convert to Periods")
valid_types = (str, datetime, Period, pydt.date, pydt.time, np.datetime64)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
)
warnings.filterwarnings(
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
)
if (
isinstance(values, valid_types)
or is_integer(values)
or is_float(values)
):
return get_datevalue(values, axis.freq)
elif isinstance(values, PeriodIndex):
return values.asfreq(axis.freq).asi8
elif isinstance(values, Index):
return values.map(lambda x: get_datevalue(x, axis.freq))
elif lib.infer_dtype(values, skipna=False) == "period":
# https://github.com/pandas-dev/pandas/issues/24304
# convert ndarray[period] -> PeriodIndex
return PeriodIndex(values, freq=axis.freq).asi8
elif isinstance(values, (list, tuple, np.ndarray, Index)):
return [get_datevalue(x, axis.freq) for x in values]
return values
def get_datevalue(date, freq):
if isinstance(date, Period):
return date.asfreq(freq).ordinal
elif isinstance(date, (str, datetime, pydt.date, pydt.time, np.datetime64)):
return Period(date, freq).ordinal
elif (
is_integer(date)
or is_float(date)
or (isinstance(date, (np.ndarray, Index)) and (date.size == 1))
):
return date
elif date is None:
return None
raise ValueError(f"Unrecognizable date '{date}'")
# Datetime Conversion
class DatetimeConverter(mdates.DateConverter):
@staticmethod
def convert(values, unit, axis):
# values might be a 1-d array, or a list-like of arrays.
if is_nested_list_like(values):
values = [DatetimeConverter._convert_1d(v, unit, axis) for v in values]
else:
values = DatetimeConverter._convert_1d(values, unit, axis)
return values
@staticmethod
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return mdates.date2num(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date, np.datetime64, pydt.time)):
return mdates.date2num(values)
elif is_integer(values) or is_float(values):
return values
elif isinstance(values, str):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index, Series)):
if isinstance(values, Series):
# https://github.com/matplotlib/matplotlib/issues/11391
# Series was skipped. Convert to DatetimeIndex to get asi8
values = Index(values)
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com.asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
except Exception:
pass
values = mdates.date2num(values)
return values
@staticmethod
def axisinfo(unit: tzinfo | None, axis) -> munits.AxisInfo:
"""
Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used.
"""
tz = unit
majloc = PandasAutoDateLocator(tz=tz)
majfmt = PandasAutoDateFormatter(majloc, tz=tz)
datemin = pydt.date(2000, 1, 1)
datemax = pydt.date(2010, 1, 1)
return munits.AxisInfo(
majloc=majloc, majfmt=majfmt, label="", default_limits=(datemin, datemax)
)
class PandasAutoDateFormatter(mdates.AutoDateFormatter):
def __init__(self, locator, tz=None, defaultfmt: str = "%Y-%m-%d") -> None:
mdates.AutoDateFormatter.__init__(self, locator, tz, defaultfmt)
class PandasAutoDateLocator(mdates.AutoDateLocator):
def get_locator(self, dmin, dmax):
"""Pick the best locator based on a distance."""
tot_sec = (dmax - dmin).total_seconds()
if abs(tot_sec) < self.minticks:
self._freq = -1
locator = MilliSecondLocator(self.tz)
locator.set_axis(self.axis)
locator.axis.set_view_interval(*self.axis.get_view_interval())
locator.axis.set_data_interval(*self.axis.get_data_interval())
return locator
return mdates.AutoDateLocator.get_locator(self, dmin, dmax)
def _get_unit(self):
return MilliSecondLocator.get_unit_generic(self._freq)
class MilliSecondLocator(mdates.DateLocator):
UNIT = 1.0 / (24 * 3600 * 1000)
def __init__(self, tz) -> None:
mdates.DateLocator.__init__(self, tz)
self._interval = 1.0
def _get_unit(self):
return self.get_unit_generic(-1)
@staticmethod
def get_unit_generic(freq):
unit = mdates.RRuleLocator.get_unit_generic(freq)
if unit < 0:
return MilliSecondLocator.UNIT
return unit
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
# We need to cap at the endpoints of valid datetime
nmax, nmin = mdates.date2num((dmax, dmin))
num = (nmax - nmin) * 86400 * 1000
max_millis_ticks = 6
for interval in [1, 10, 50, 100, 200, 500]:
if num <= interval * (max_millis_ticks - 1):
self._interval = interval
break
# We went through the whole loop without breaking, default to 1
self._interval = 1000.0
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
if estimate > self.MAXTICKS * 2:
raise RuntimeError(
"MillisecondLocator estimated to generate "
f"{estimate:d} ticks from {dmin} to {dmax}: exceeds Locator.MAXTICKS"
f"* 2 ({self.MAXTICKS * 2:d}) "
)
interval = self._get_interval()
freq = f"{interval}ms"
tz = self.tz.tzname(None)
st = dmin.replace(tzinfo=None)
ed = dmin.replace(tzinfo=None)
all_dates = date_range(start=st, end=ed, freq=freq, tz=tz).astype(object)
try:
if len(all_dates) > 0:
locs = self.raise_if_exceeds(mdates.date2num(all_dates))
return locs
except Exception: # pragma: no cover
pass
lims = mdates.date2num([dmin, dmax])
return lims
def _get_interval(self):
return self._interval
def autoscale(self):
"""
Set the view limits to include the data range.
"""
# We need to cap at the endpoints of valid datetime
dmin, dmax = self.datalim_to_dt()
vmin = mdates.date2num(dmin)
vmax = mdates.date2num(dmax)
return self.nonsingular(vmin, vmax)
def _from_ordinal(x, tz: tzinfo | None = None) -> datetime:
ix = int(x)
dt = datetime.fromordinal(ix)
remainder = float(x) - ix
hour, remainder = divmod(24 * remainder, 1)
minute, remainder = divmod(60 * remainder, 1)
second, remainder = divmod(60 * remainder, 1)
microsecond = int(1_000_000 * remainder)
if microsecond < 10:
microsecond = 0 # compensate for rounding errors
dt = datetime(
dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond
)
if tz is not None:
dt = dt.astimezone(tz)
if microsecond > 999990: # compensate for rounding errors
dt += timedelta(microseconds=1_000_000 - microsecond)
return dt
# Fixed frequency dynamic tick locators and formatters
# -------------------------------------------------------------------------
# --- Locators ---
# -------------------------------------------------------------------------
def _get_default_annual_spacing(nyears) -> tuple[int, int]:
"""
Returns a default spacing between consecutive ticks for annual data.
"""
if nyears < 11:
(min_spacing, maj_spacing) = (1, 1)
elif nyears < 20:
(min_spacing, maj_spacing) = (1, 2)
elif nyears < 50:
(min_spacing, maj_spacing) = (1, 5)
elif nyears < 100:
(min_spacing, maj_spacing) = (5, 10)
elif nyears < 200:
(min_spacing, maj_spacing) = (5, 25)
elif nyears < 600:
(min_spacing, maj_spacing) = (10, 50)
else:
factor = nyears // 1000 + 1
(min_spacing, maj_spacing) = (factor * 20, factor * 100)
return (min_spacing, maj_spacing)
def _period_break(dates: PeriodIndex, period: str) -> npt.NDArray[np.intp]:
"""
Returns the indices where the given period changes.
Parameters
----------
dates : PeriodIndex
Array of intervals to monitor.
period : str
Name of the period to monitor.
"""
mask = _period_break_mask(dates, period)
return np.nonzero(mask)[0]
def _period_break_mask(dates: PeriodIndex, period: str) -> npt.NDArray[np.bool_]:
current = getattr(dates, period)
previous = getattr(dates - 1 * dates.freq, period)
return current != previous
def has_level_label(label_flags: npt.NDArray[np.intp], vmin: float) -> bool:
"""
Returns true if the ``label_flags`` indicate there is at least one label
for this level.
if the minimum view limit is not an exact integer, then the first tick
label won't be shown, so we must adjust for that.
"""
if label_flags.size == 0 or (
label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0
):
return False
else:
return True
def _get_periods_per_ymd(freq: BaseOffset) -> tuple[int, int, int]:
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
freq_group = FreqGroup.from_period_dtype_code(dtype_code)
ppd = -1 # placeholder for above-day freqs
if dtype_code >= FreqGroup.FR_HR.value:
# error: "BaseOffset" has no attribute "_creso"
ppd = periods_per_day(freq._creso) # type: ignore[attr-defined]
ppm = 28 * ppd
ppy = 365 * ppd
elif freq_group == FreqGroup.FR_BUS:
ppm = 19
ppy = 261
elif freq_group == FreqGroup.FR_DAY:
ppm = 28
ppy = 365
elif freq_group == FreqGroup.FR_WK:
ppm = 3
ppy = 52
elif freq_group == FreqGroup.FR_MTH:
ppm = 1
ppy = 12
elif freq_group == FreqGroup.FR_QTR:
ppm = -1 # placerholder
ppy = 4
elif freq_group == FreqGroup.FR_ANN:
ppm = -1 # placeholder
ppy = 1
else:
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
return ppd, ppm, ppy
def _daily_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
periodsperday, periodspermonth, periodsperyear = _get_periods_per_ymd(freq)
# save this for later usage
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
)
warnings.filterwarnings(
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
)
dates_ = period_range(
start=Period(ordinal=vmin, freq=freq),
end=Period(ordinal=vmax, freq=freq),
freq=freq,
)
# Initialize the output
info = np.zeros(
span, dtype=[("val", np.int64), ("maj", bool), ("min", bool), ("fmt", "|S20")]
)
info["val"][:] = dates_.asi8
info["fmt"][:] = ""
info["maj"][[0, -1]] = True
# .. and set some shortcuts
info_maj = info["maj"]
info_min = info["min"]
info_fmt = info["fmt"]
def first_label(label_flags):
if (label_flags[0] == 0) and (label_flags.size > 1) and ((vmin_orig % 1) > 0.0):
return label_flags[1]
else:
return label_flags[0]
# Case 1. Less than a month
if span <= periodspermonth:
day_start = _period_break(dates_, "day")
month_start = _period_break(dates_, "month")
year_start = _period_break(dates_, "year")
def _hour_finder(label_interval: int, force_year_start: bool) -> None:
target = dates_.hour
mask = _period_break_mask(dates_, "hour")
info_maj[day_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
info_fmt[day_start] = "%H:%M\n%d-%b"
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
if force_year_start and not has_level_label(year_start, vmin_orig):
info_fmt[first_label(day_start)] = "%H:%M\n%d-%b\n%Y"
def _minute_finder(label_interval: int) -> None:
target = dates_.minute
hour_start = _period_break(dates_, "hour")
mask = _period_break_mask(dates_, "minute")
info_maj[hour_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
info_fmt[day_start] = "%H:%M\n%d-%b"
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
def _second_finder(label_interval: int) -> None:
target = dates_.second
minute_start = _period_break(dates_, "minute")
mask = _period_break_mask(dates_, "second")
info_maj[minute_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M:%S"
info_fmt[day_start] = "%H:%M:%S\n%d-%b"
info_fmt[year_start] = "%H:%M:%S\n%d-%b\n%Y"
if span < periodsperday / 12000:
_second_finder(1)
elif span < periodsperday / 6000:
_second_finder(2)
elif span < periodsperday / 2400:
_second_finder(5)
elif span < periodsperday / 1200:
_second_finder(10)
elif span < periodsperday / 800:
_second_finder(15)
elif span < periodsperday / 400:
_second_finder(30)
elif span < periodsperday / 150:
_minute_finder(1)
elif span < periodsperday / 70:
_minute_finder(2)
elif span < periodsperday / 24:
_minute_finder(5)
elif span < periodsperday / 12:
_minute_finder(15)
elif span < periodsperday / 6:
_minute_finder(30)
elif span < periodsperday / 2.5:
_hour_finder(1, False)
elif span < periodsperday / 1.5:
_hour_finder(2, False)
elif span < periodsperday * 1.25:
_hour_finder(3, False)
elif span < periodsperday * 2.5:
_hour_finder(6, True)
elif span < periodsperday * 4:
_hour_finder(12, True)
else:
info_maj[month_start] = True
info_min[day_start] = True
info_fmt[day_start] = "%d"
info_fmt[month_start] = "%d\n%b"
info_fmt[year_start] = "%d\n%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if not has_level_label(month_start, vmin_orig):
info_fmt[first_label(day_start)] = "%d\n%b\n%Y"
else:
info_fmt[first_label(month_start)] = "%d\n%b\n%Y"
# Case 2. Less than three months
elif span <= periodsperyear // 4:
month_start = _period_break(dates_, "month")
info_maj[month_start] = True
if dtype_code < FreqGroup.FR_HR.value:
info["min"] = True
else:
day_start = _period_break(dates_, "day")
info["min"][day_start] = True
week_start = _period_break(dates_, "week")
year_start = _period_break(dates_, "year")
info_fmt[week_start] = "%d"
info_fmt[month_start] = "\n\n%b"
info_fmt[year_start] = "\n\n%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if not has_level_label(month_start, vmin_orig):
info_fmt[first_label(week_start)] = "\n\n%b\n%Y"
else:
info_fmt[first_label(month_start)] = "\n\n%b\n%Y"
# Case 3. Less than 14 months ...............
elif span <= 1.15 * periodsperyear:
year_start = _period_break(dates_, "year")
month_start = _period_break(dates_, "month")
week_start = _period_break(dates_, "week")
info_maj[month_start] = True
info_min[week_start] = True
info_min[year_start] = False
info_min[month_start] = False
info_fmt[month_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
if not has_level_label(year_start, vmin_orig):
info_fmt[first_label(month_start)] = "%b\n%Y"
# Case 4. Less than 2.5 years ...............
elif span <= 2.5 * periodsperyear:
year_start = _period_break(dates_, "year")
quarter_start = _period_break(dates_, "quarter")
month_start = _period_break(dates_, "month")
info_maj[quarter_start] = True
info_min[month_start] = True
info_fmt[quarter_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
# Case 4. Less than 4 years .................
elif span <= 4 * periodsperyear:
year_start = _period_break(dates_, "year")
month_start = _period_break(dates_, "month")
info_maj[year_start] = True
info_min[month_start] = True
info_min[year_start] = False
month_break = dates_[month_start].month
jan_or_jul = month_start[(month_break == 1) | (month_break == 7)]
info_fmt[jan_or_jul] = "%b"
info_fmt[year_start] = "%b\n%Y"
# Case 5. Less than 11 years ................
elif span <= 11 * periodsperyear:
year_start = _period_break(dates_, "year")
quarter_start = _period_break(dates_, "quarter")
info_maj[year_start] = True
info_min[quarter_start] = True
info_min[year_start] = False
info_fmt[year_start] = "%Y"
# Case 6. More than 12 years ................
else:
year_start = _period_break(dates_, "year")
year_break = dates_[year_start].year
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
major_idx = year_start[(year_break % maj_anndef == 0)]
info_maj[major_idx] = True
minor_idx = year_start[(year_break % min_anndef == 0)]
info_min[minor_idx] = True
info_fmt[major_idx] = "%Y"
return info
def _monthly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
_, _, periodsperyear = _get_periods_per_ymd(freq)
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
# Initialize the output
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
dates_ = info["val"]
info["fmt"] = ""
year_start = (dates_ % 12 == 0).nonzero()[0]
info_maj = info["maj"]
info_fmt = info["fmt"]
if span <= 1.15 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[:] = "%b"
info_fmt[year_start] = "%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if dates_.size > 1:
idx = 1
else:
idx = 0
info_fmt[idx] = "%b\n%Y"
elif span <= 2.5 * periodsperyear:
quarter_start = (dates_ % 3 == 0).nonzero()
info_maj[year_start] = True
# TODO: Check the following : is it really info['fmt'] ?
# 2023-09-15 this is reached in test_finder_monthly
info["fmt"][quarter_start] = True
info["min"] = True
info_fmt[quarter_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
elif span <= 4 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
jan_or_jul = (dates_ % 12 == 0) | (dates_ % 12 == 6)
info_fmt[jan_or_jul] = "%b"
info_fmt[year_start] = "%b\n%Y"
elif span <= 11 * periodsperyear:
quarter_start = (dates_ % 3 == 0).nonzero()
info_maj[year_start] = True
info["min"][quarter_start] = True
info_fmt[year_start] = "%Y"
else:
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
years = dates_[year_start] // 12 + 1
major_idx = year_start[(years % maj_anndef == 0)]
info_maj[major_idx] = True
info["min"][year_start[(years % min_anndef == 0)]] = True
info_fmt[major_idx] = "%Y"
return info
def _quarterly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
_, _, periodsperyear = _get_periods_per_ymd(freq)
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
info["fmt"] = ""
dates_ = info["val"]
info_maj = info["maj"]
info_fmt = info["fmt"]
year_start = (dates_ % 4 == 0).nonzero()[0]
if span <= 3.5 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[:] = "Q%q"
info_fmt[year_start] = "Q%q\n%F"
if not has_level_label(year_start, vmin_orig):
if dates_.size > 1:
idx = 1
else:
idx = 0
info_fmt[idx] = "Q%q\n%F"
elif span <= 11 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[year_start] = "%F"
else:
# https://github.com/pandas-dev/pandas/pull/47602
years = dates_[year_start] // 4 + 1970
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
major_idx = year_start[(years % maj_anndef == 0)]
info_maj[major_idx] = True
info["min"][year_start[(years % min_anndef == 0)]] = True
info_fmt[major_idx] = "%F"
return info
def _annual_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
# Note: small difference here vs other finders in adding 1 to vmax
(vmin, vmax) = (int(vmin), int(vmax + 1))
span = vmax - vmin + 1
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
info["fmt"] = ""
dates_ = info["val"]
(min_anndef, maj_anndef) = _get_default_annual_spacing(span)
major_idx = dates_ % maj_anndef == 0
minor_idx = dates_ % min_anndef == 0
info["maj"][major_idx] = True
info["min"][minor_idx] = True
info["fmt"][major_idx] = "%Y"
return info
def get_finder(freq: BaseOffset):
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
fgroup = FreqGroup.from_period_dtype_code(dtype_code)
if fgroup == FreqGroup.FR_ANN:
return _annual_finder
elif fgroup == FreqGroup.FR_QTR:
return _quarterly_finder
elif fgroup == FreqGroup.FR_MTH:
return _monthly_finder
elif (dtype_code >= FreqGroup.FR_BUS.value) or fgroup == FreqGroup.FR_WK:
return _daily_finder
else: # pragma: no cover
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
class TimeSeries_DateLocator(Locator):
"""
Locates the ticks along an axis controlled by a :class:`Series`.
Parameters
----------
freq : BaseOffset
Valid frequency specifier.
minor_locator : {False, True}, optional
Whether the locator is for minor ticks (True) or not.
dynamic_mode : {True, False}, optional
Whether the locator should work in dynamic mode.
base : {int}, optional
quarter : {int}, optional
month : {int}, optional
day : {int}, optional
"""
def __init__(
self,
freq: BaseOffset,
minor_locator: bool = False,
dynamic_mode: bool = True,
base: int = 1,
quarter: int = 1,
month: int = 1,
day: int = 1,
plot_obj=None,
) -> None:
freq = to_offset(freq, is_period=True)
self.freq = freq
self.base = base
(self.quarter, self.month, self.day) = (quarter, month, day)
self.isminor = minor_locator
self.isdynamic = dynamic_mode
self.offset = 0
self.plot_obj = plot_obj
self.finder = get_finder(freq)
def _get_default_locs(self, vmin, vmax):
"""Returns the default locations of ticks."""
if self.plot_obj.date_axis_info is None:
self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq)
locator = self.plot_obj.date_axis_info
if self.isminor:
return np.compress(locator["min"], locator["val"])
return np.compress(locator["maj"], locator["val"])
def __call__(self):
"""Return the locations of the ticks."""
# axis calls Locator.set_axis inside set_m<xxxx>_formatter
vi = tuple(self.axis.get_view_interval())
if vi != self.plot_obj.view_interval:
self.plot_obj.date_axis_info = None
self.plot_obj.view_interval = vi
vmin, vmax = vi
if vmax < vmin:
vmin, vmax = vmax, vmin
if self.isdynamic:
locs = self._get_default_locs(vmin, vmax)
else: # pragma: no cover
base = self.base
(d, m) = divmod(vmin, base)